test_end2end_tfc_w1a1_throughput_test.py 14.00 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
from pkgutil import get_data
import pytest
import numpy as np
# as of Feb'20 there is a bug that segfaults ONNX shape inference if we
# import pytorch before onnx, so we make sure to import onnx first
import onnx # NOQA
import onnx.numpy_helper as nph
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
import finn.transformation.streamline.absorb as absorb
from finn.core.modelwrapper import ModelWrapper
from finn.core.onnx_exec import execute_onnx
from finn.core.throughput_test import throughput_test
from finn.custom_op.registry import getCustomOp
from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.create_stitched_ip import CreateStitchedIP
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.transformation.fpgadataflow.create_dataflow_partition import (
CreateDataflowPartition,
)
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.insert_dwc import InsertDWC
from finn.transformation.fpgadataflow.insert_tlastmarker import InsertTLastMarker
from finn.transformation.fpgadataflow.insert_fifo import InsertFIFO
from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ
from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver
from finn.transformation.fpgadataflow.make_pynq_proj import MakePYNQProject
from finn.transformation.fpgadataflow.replace_verilog_relpaths import (
ReplaceVerilogRelPaths,
)
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
from finn.transformation.fpgadataflow.synth_pynq_proj import SynthPYNQProject
from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds
from finn.util.basic import pynq_part_map
from finn.util.test import get_test_model_trained
from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
build_dir = "/tmp/" + os.environ["FINN_INST_NAME"]
test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1")
test_fpga_part = pynq_part_map[test_pynq_board]
target_clk_ns = 5
mem_mode = "decoupled"
def test_end2end_tfc_w1a1_export():
import brevitas.onnx as bo
tfc = get_test_model_trained("TFC", 1, 1)
bo.export_finn_onnx(
tfc, (1, 1, 28, 28), build_dir + "/end2end_tfc_w1a1_export.onnx"
)
def test_end2end_tfc_w1a1_import_and_tidy():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_export.onnx")
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferDataTypes())
model.save(build_dir + "/end2end_tfc_w1a1_tidy.onnx")
def test_end2end_tfc_w1a1_streamline():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_tidy.onnx")
model = model.transform(Streamline())
model.save(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
def test_end2end_tfc_w1a1_convert_to_hls_layers():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
model = model.transform(ConvertBipolarMatMulToXnorPopcount())
model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
model = model.transform(RoundAndClipThresholds())
model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode))
model.save(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx")
def test_end2end_tfc_w1a1_create_dataflow_partition():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx")
parent_model = model.transform(CreateDataflowPartition())
parent_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx")
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
dataflow_model_filename = sdp_node.get_nodeattr("model")
dataflow_model = ModelWrapper(dataflow_model_filename)
dataflow_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx")
def test_end2end_tfc_w1a1_fold_and_tlastmarker():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx")
fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
# (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer
config = [
(16, 49, 16, 64, "block"),
(8, 8, 64, 64, "auto"),
(8, 8, 64, 64, "auto"),
(10, 8, 64, 10, "distributed"),
]
for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config):
fcl_inst = getCustomOp(fcl)
fcl_inst.set_nodeattr("PE", pe)
fcl_inst.set_nodeattr("SIMD", simd)
fcl_inst.set_nodeattr("inFIFODepth", ififo)
fcl_inst.set_nodeattr("outFIFODepth", ofifo)
fcl_inst.set_nodeattr("ram_style", ramstyle)
model = model.transform(InsertDWC())
model = model.transform(InsertFIFO())
model = model.transform(InsertTLastMarker())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(AnnotateResources("estimate"))
model.save(build_dir + "/end2end_tfc_w1a1_folded.onnx")
def test_end2end_tfc_w1a1_gen_hls_ip():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_folded.onnx")
model = model.transform(PrepareIP(test_fpga_part, target_clk_ns))
model = model.transform(HLSSynthIP())
model = model.transform(AnnotateResources("hls"))
model.save(build_dir + "/end2end_tfc_w1a1_ipgen.onnx")
def test_end2end_tfc_w1a1_ip_stitch():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipgen.onnx")
model = model.transform(ReplaceVerilogRelPaths())
model = model.transform(CreateStitchedIP(test_fpga_part, target_clk_ns))
model.save(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx")
def test_end2end_tfc_w1a1_verify_dataflow_part():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx")
x = np.zeros((1, 784), dtype=np.float32)
inp_name = model.graph.input[0].name
out_name = model.graph.output[0].name
inp_dict = {inp_name: x}
# cppsim
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
model = model.transform(SetExecMode("cppsim"))
model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_cppsim.onnx")
ret_cppsim = execute_onnx(model, inp_dict, True)
res_cppsim = ret_cppsim[out_name]
# node-by-node rtlsim
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(PrepareRTLSim())
model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_nodebynode_rtlsim.onnx")
ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True)
res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name]
# whole-network (ip-stitched) rtlsim
model.set_metadata_prop("exec_mode", "rtlsim")
model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_whole_rtlsim.onnx")
ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
res_rtlsim_whole = ret_rtlsim_whole[out_name]
assert np.isclose(res_cppsim, res_rtlsim_nodebynode).all()
assert np.isclose(res_cppsim, res_rtlsim_whole).all()
def test_end2end_tfc_w1a1_verify_all():
# use the streamlined model as the "golden" model for right answers
golden = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
iname = golden.graph.input[0].name
oname = golden.graph.output[0].name
raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
x = nph.to_array(input_tensor)
# x = np.zeros(ishape, dtype=np.float32)
ret_golden = execute_onnx(golden, {iname: x}, True)
y_golden = ret_golden[oname]
# set up parent+child graph to test
# we'll use models from the previous step as the child model
parent_model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx")
iname = parent_model.graph.input[0].name
oname = parent_model.graph.output[0].name
# produce results with cppsim
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_ipstitch_cppsim.onnx")
ret_cppsim = execute_onnx(parent_model, {iname: x}, True)
y_cppsim = ret_cppsim[oname]
# produce results with node-by-node rtlsim
sdp_node.set_nodeattr(
"model", build_dir + "/end2end_tfc_w1a1_ipstitch_nodebynode_rtlsim.onnx"
)
ret_nodebynode_rtlsim = execute_onnx(parent_model, {iname: x}, True)
y_nodebynode_rtlsim = ret_nodebynode_rtlsim[oname]
# produce results with whole-network (stitched ip) rtlsim
sdp_node.set_nodeattr(
"model", build_dir + "/end2end_tfc_w1a1_ipstitch_whole_rtlsim.onnx"
)
ret_whole_rtlsim = execute_onnx(parent_model, {iname: x}, True)
y_whole_rtlsim = ret_whole_rtlsim[oname]
assert np.isclose(y_golden, y_cppsim).all()
assert np.isclose(y_golden, y_nodebynode_rtlsim).all()
assert np.isclose(y_golden, y_whole_rtlsim).all()
def test_end2end_tfc_w1a1_make_pynq_proj():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx")
model = model.transform(MakePYNQProject(test_pynq_board))
model.save(build_dir + "/end2end_tfc_w1a1_pynq_project.onnx")
def test_end2end_tfc_w1a1_synth_pynq_project():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_pynq_project.onnx")
model = model.transform(SynthPYNQProject())
model = model.transform(AnnotateResources("synth"))
model.save(build_dir + "/end2end_tfc_w1a1_synth.onnx")
def test_end2end_tfc_w1a1_make_driver():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_synth.onnx")
model = model.transform(MakePYNQDriver())
model.save(build_dir + "/end2end_tfc_w1a1_pynq_driver.onnx")
def test_end2end_tfc_w1a1_deploy_on_pynq():
model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_pynq_driver.onnx")
try:
ip = os.environ["PYNQ_IP"] # no fault for this one; skip if not defined
if ip == "":
pytest.skip("PYNQ board IP address not specified")
username = os.getenv("PYNQ_USERNAME", "xilinx")
password = os.getenv("PYNQ_PASSWORD", "xilinx")
port = os.getenv("PYNQ_PORT", 22)
target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn")
model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir))
# save the model to be able to link it to the parent
model.save(build_dir + "/end2end_tfc_w1a1_pynq_deploy.onnx")
except KeyError:
pytest.skip("PYNQ board IP address not specified")
def test_end2end_tfc_w1a1_run_on_pynq():
# use the streamlined model as the "golden" model for right answers
golden = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
iname = golden.graph.input[0].name
oname = golden.graph.output[0].name
raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
x = nph.to_array(input_tensor)
# x = np.zeros(ishape, dtype=np.float32)
# run using FINN-based execution
ret_golden = execute_onnx(golden, {iname: x}, True)
y_golden = ret_golden[oname]
# set up parent+child graph to test
# we'll use models from the previous step as the child model
parent_model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx")
iname = parent_model.graph.input[0].name
oname = parent_model.graph.output[0].name
try:
ip = os.environ["PYNQ_IP"] # NOQA
if ip == "":
pytest.skip("PYNQ board IP address not specified")
# produce results with cppsim
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_pynq_deploy.onnx")
ret = execute_onnx(parent_model, {iname: x}, True)
y = ret[oname]
assert np.isclose(y, y_golden).all()
child_model = ModelWrapper(sdp_node.get_nodeattr("model"))
res = throughput_test(child_model)
assert res is not None
except KeyError:
pytest.skip("PYNQ board IP address not specified")