# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os from pkgutil import get_data import pytest import numpy as np # as of Feb'20 there is a bug that segfaults ONNX shape inference if we # import pytorch before onnx, so we make sure to import onnx first import onnx # NOQA import onnx.numpy_helper as nph import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls import finn.transformation.streamline.absorb as absorb from finn.core.modelwrapper import ModelWrapper from finn.core.onnx_exec import execute_onnx from finn.core.throughput_test import throughput_test from finn.custom_op.registry import getCustomOp from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount from finn.transformation.fold_constants import FoldConstants from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.create_stitched_ip import CreateStitchedIP from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim from finn.transformation.fpgadataflow.create_dataflow_partition import ( CreateDataflowPartition, ) from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.insert_dwc import InsertDWC from finn.transformation.fpgadataflow.insert_tlastmarker import InsertTLastMarker from finn.transformation.fpgadataflow.insert_fifo import InsertFIFO from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver from finn.transformation.fpgadataflow.make_pynq_proj import MakePYNQProject from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( ReplaceVerilogRelPaths, ) from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode from finn.transformation.fpgadataflow.synth_pynq_proj import SynthPYNQProject from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import Streamline from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds from finn.util.basic import pynq_part_map from finn.util.test import get_test_model_trained from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") test_fpga_part = pynq_part_map[test_pynq_board] target_clk_ns = 5 mem_mode = "decoupled" def test_end2end_tfc_w1a1_export(): import brevitas.onnx as bo tfc = get_test_model_trained("TFC", 1, 1) bo.export_finn_onnx( tfc, (1, 1, 28, 28), build_dir + "/end2end_tfc_w1a1_export.onnx" ) def test_end2end_tfc_w1a1_import_and_tidy(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_export.onnx") model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) model.save(build_dir + "/end2end_tfc_w1a1_tidy.onnx") def test_end2end_tfc_w1a1_streamline(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_tidy.onnx") model = model.transform(Streamline()) model.save(build_dir + "/end2end_tfc_w1a1_streamlined.onnx") def test_end2end_tfc_w1a1_convert_to_hls_layers(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx") model = model.transform(ConvertBipolarMatMulToXnorPopcount()) model = model.transform(absorb.AbsorbAddIntoMultiThreshold()) model = model.transform(absorb.AbsorbMulIntoMultiThreshold()) model = model.transform(RoundAndClipThresholds()) model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode)) model.save(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx") def test_end2end_tfc_w1a1_create_dataflow_partition(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx") parent_model = model.transform(CreateDataflowPartition()) parent_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx") sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] sdp_node = getCustomOp(sdp_node) dataflow_model_filename = sdp_node.get_nodeattr("model") dataflow_model = ModelWrapper(dataflow_model_filename) dataflow_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx") def test_end2end_tfc_w1a1_fold_and_tlastmarker(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx") fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") # (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer config = [ (16, 49, 16, 64, "block"), (8, 8, 64, 64, "auto"), (8, 8, 64, 64, "auto"), (10, 8, 64, 10, "distributed"), ] for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config): fcl_inst = getCustomOp(fcl) fcl_inst.set_nodeattr("PE", pe) fcl_inst.set_nodeattr("SIMD", simd) fcl_inst.set_nodeattr("inFIFODepth", ififo) fcl_inst.set_nodeattr("outFIFODepth", ofifo) fcl_inst.set_nodeattr("ram_style", ramstyle) model = model.transform(InsertDWC()) model = model.transform(InsertFIFO()) model = model.transform(InsertTLastMarker()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(AnnotateResources("estimate")) model.save(build_dir + "/end2end_tfc_w1a1_folded.onnx") def test_end2end_tfc_w1a1_gen_hls_ip(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_folded.onnx") model = model.transform(PrepareIP(test_fpga_part, target_clk_ns)) model = model.transform(HLSSynthIP()) model = model.transform(AnnotateResources("hls")) model.save(build_dir + "/end2end_tfc_w1a1_ipgen.onnx") def test_end2end_tfc_w1a1_ip_stitch(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipgen.onnx") model = model.transform(ReplaceVerilogRelPaths()) model = model.transform(CreateStitchedIP(test_fpga_part, target_clk_ns)) model.save(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx") def test_end2end_tfc_w1a1_verify_dataflow_part(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx") x = np.zeros((1, 784), dtype=np.float32) inp_name = model.graph.input[0].name out_name = model.graph.output[0].name inp_dict = {inp_name: x} # cppsim model = model.transform(PrepareCppSim()) model = model.transform(CompileCppSim()) model = model.transform(SetExecMode("cppsim")) model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_cppsim.onnx") ret_cppsim = execute_onnx(model, inp_dict, True) res_cppsim = ret_cppsim[out_name] # node-by-node rtlsim model = model.transform(SetExecMode("rtlsim")) model = model.transform(PrepareRTLSim()) model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_nodebynode_rtlsim.onnx") ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True) res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name] # whole-network (ip-stitched) rtlsim model.set_metadata_prop("exec_mode", "rtlsim") model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_whole_rtlsim.onnx") ret_rtlsim_whole = execute_onnx(model, inp_dict, True) res_rtlsim_whole = ret_rtlsim_whole[out_name] assert np.isclose(res_cppsim, res_rtlsim_nodebynode).all() assert np.isclose(res_cppsim, res_rtlsim_whole).all() def test_end2end_tfc_w1a1_verify_all(): # use the streamlined model as the "golden" model for right answers golden = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx") iname = golden.graph.input[0].name oname = golden.graph.output[0].name raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) x = nph.to_array(input_tensor) # x = np.zeros(ishape, dtype=np.float32) ret_golden = execute_onnx(golden, {iname: x}, True) y_golden = ret_golden[oname] # set up parent+child graph to test # we'll use models from the previous step as the child model parent_model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx") iname = parent_model.graph.input[0].name oname = parent_model.graph.output[0].name # produce results with cppsim sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_ipstitch_cppsim.onnx") ret_cppsim = execute_onnx(parent_model, {iname: x}, True) y_cppsim = ret_cppsim[oname] # produce results with node-by-node rtlsim sdp_node.set_nodeattr( "model", build_dir + "/end2end_tfc_w1a1_ipstitch_nodebynode_rtlsim.onnx" ) ret_nodebynode_rtlsim = execute_onnx(parent_model, {iname: x}, True) y_nodebynode_rtlsim = ret_nodebynode_rtlsim[oname] # produce results with whole-network (stitched ip) rtlsim sdp_node.set_nodeattr( "model", build_dir + "/end2end_tfc_w1a1_ipstitch_whole_rtlsim.onnx" ) ret_whole_rtlsim = execute_onnx(parent_model, {iname: x}, True) y_whole_rtlsim = ret_whole_rtlsim[oname] assert np.isclose(y_golden, y_cppsim).all() assert np.isclose(y_golden, y_nodebynode_rtlsim).all() assert np.isclose(y_golden, y_whole_rtlsim).all() def test_end2end_tfc_w1a1_make_pynq_proj(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_ipstitch.onnx") model = model.transform(MakePYNQProject(test_pynq_board)) model.save(build_dir + "/end2end_tfc_w1a1_pynq_project.onnx") def test_end2end_tfc_w1a1_synth_pynq_project(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_pynq_project.onnx") model = model.transform(SynthPYNQProject()) model = model.transform(AnnotateResources("synth")) model.save(build_dir + "/end2end_tfc_w1a1_synth.onnx") def test_end2end_tfc_w1a1_make_driver(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_synth.onnx") model = model.transform(MakePYNQDriver()) model.save(build_dir + "/end2end_tfc_w1a1_pynq_driver.onnx") def test_end2end_tfc_w1a1_deploy_on_pynq(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_pynq_driver.onnx") try: ip = os.environ["PYNQ_IP"] # no fault for this one; skip if not defined if ip == "": pytest.skip("PYNQ board IP address not specified") username = os.getenv("PYNQ_USERNAME", "xilinx") password = os.getenv("PYNQ_PASSWORD", "xilinx") port = os.getenv("PYNQ_PORT", 22) target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn") model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir)) # save the model to be able to link it to the parent model.save(build_dir + "/end2end_tfc_w1a1_pynq_deploy.onnx") except KeyError: pytest.skip("PYNQ board IP address not specified") def test_end2end_tfc_w1a1_run_on_pynq(): # use the streamlined model as the "golden" model for right answers golden = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx") iname = golden.graph.input[0].name oname = golden.graph.output[0].name raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) x = nph.to_array(input_tensor) # x = np.zeros(ishape, dtype=np.float32) # run using FINN-based execution ret_golden = execute_onnx(golden, {iname: x}, True) y_golden = ret_golden[oname] # set up parent+child graph to test # we'll use models from the previous step as the child model parent_model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx") iname = parent_model.graph.input[0].name oname = parent_model.graph.output[0].name try: ip = os.environ["PYNQ_IP"] # NOQA if ip == "": pytest.skip("PYNQ board IP address not specified") # produce results with cppsim sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_pynq_deploy.onnx") ret = execute_onnx(parent_model, {iname: x}, True) y = ret[oname] assert np.isclose(y, y_golden).all() child_model = ModelWrapper(sdp_node.get_nodeattr("model")) res = throughput_test(child_model) assert res is not None except KeyError: pytest.skip("PYNQ board IP address not specified")