Newer
Older
# Copyright (c) 2021, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pkg_resources as pk
import pytest

Hendrik Borras
committed
import brevitas.export.onnx.generic as b_onnx
import brevitas.onnx as bo
import numpy as np
import onnx
import onnx.numpy_helper as nph

Hendrik Borras
committed
import torch
from pkgutil import get_data
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.transformation.fold_constants import FoldConstants
from qonnx.transformation.general import GiveUniqueNodeNames, RemoveStaticGraphInputs
from qonnx.transformation.infer_shapes import InferShapes
from qonnx.util.cleanup import cleanup
from tempfile import TemporaryDirectory
import finn.core.onnx_exec as oxe

Hendrik Borras
committed
from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN
from finn.util.test import get_test_model_trained
def get_brev_model_and_sample_inputs(model_name, wbits, abits):
if "FC" in model_name:
in_shape = (1, 1, 28, 28)
raw_i = get_data("qonnx.data", "onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
input_tensor = nph.to_array(input_tensor)
brev_model = get_test_model_trained(model_name, wbits, abits)
elif model_name == "CNV":
in_shape = (1, 3, 32, 32)
fn = pk.resource_filename(
"finn.qnn-data", "cifar10/cifar10-test-data-class3.npz"
)
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
input_tensor = input_tensor / 255
brev_model = get_test_model_trained(model_name, wbits, abits)
elif model_name == "mobilenet":
in_shape = (1, 3, 224, 224)
np.random.seed(42)
input_tensor = np.random.normal(size=in_shape).astype(dtype=np.float32)
brev_model = get_test_model_trained(model_name, 4, 4)
else:
raise RuntimeError(f"The model with the name {model_name} is not supported.")
return brev_model, in_shape, input_tensor
def analysis_testing_for_no_quant_nodes(model):
# Test that all Quant nodes have been converted to MultiThreshold nodes
# or folded into tensor initializers.
for op_type in ["BinaryQuant", "Quant", "Trunc"]:

Hendrik Borras
committed
q_count = len(model.get_nodes_by_op_type(op_type))
if q_count > 0:
raise ValueError(f"There should be no {op_type} nodes left in the graph.")
return dict()
# This test currently takes about 4 min and 20 seconds
@pytest.mark.parametrize("abits", [1, 2])
@pytest.mark.parametrize("wbits", [1, 2])
@pytest.mark.parametrize("model_name", ["TFC", "SFC", "LFC", "CNV", "mobilenet"])
def test_QONNX_to_FINN(model_name, wbits, abits):
if model_name == "mobilenet":
pytest.xfail("MobileNet test is temporarily excluded from QONNX testing.")
if wbits > abits:
pytest.skip("No wbits > abits cases at the moment")
if model_name == "LFC" and wbits == 2 and abits == 2:
pytest.skip("No LFC-w2a2 present at the moment")
if model_name == "mobilenet" and (wbits != 2 or abits != 2):
pytest.skip("Mobilenet only runs at W2A2, though it's technically W4A4.")

Hendrik Borras
committed
# Get test config and model
ATOL = 1e-7
brev_model, in_shape, input_tensor = get_brev_model_and_sample_inputs(
model_name, wbits, abits
)
temp_dir = TemporaryDirectory()
qonnx_base_path = temp_dir.name + "/qonnx_{}.onnx"
finn_base_path = temp_dir.name + "/finn_{}.onnx"

Hendrik Borras
committed
# Get Brevitas output
torch_input_tensor = torch.from_numpy(input_tensor).float()
brev_output = brev_model.forward(torch_input_tensor).detach().numpy()
# Get "clean" FINN model and it's output
_ = bo.export_finn_onnx(brev_model, in_shape, finn_base_path.format("raw"))
model = ModelWrapper(finn_base_path.format("raw"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(RemoveStaticGraphInputs())
model.save(finn_base_path.format("clean"))
model = ModelWrapper(finn_base_path.format("clean"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
finn_export_output = output_dict[model.graph.output[0].name]

Hendrik Borras
committed
# This test always fails on MobileNet for some reason
if model_name != "mobilenet":
assert np.isclose(
brev_output, finn_export_output, atol=ATOL
).all(), "The output of the Brevitas model and the FINN model should match."
# Get the equivalent QONNX model
b_onnx.function.DOMAIN_STRING = "qonnx.custom_op.general"

Hendrik Borras
committed
_ = b_onnx.manager.BrevitasONNXManager.export(
brev_model, in_shape, qonnx_base_path.format("raw")
)
cleanup(qonnx_base_path.format("raw"), out_file=qonnx_base_path.format("clean"))
# Compare output
model = ModelWrapper(qonnx_base_path.format("clean"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
qonnx_export_output = output_dict[model.graph.output[0].name]

Hendrik Borras
committed
assert np.isclose(
brev_output, qonnx_export_output, atol=ATOL
).all(), "The output of the Brevitas model and the QONNX model should match."
# This test always fails on MobileNet for some reason
if model_name != "mobilenet":
assert np.isclose(

Hendrik Borras
committed
qonnx_export_output, finn_export_output, atol=ATOL
).all(), "The output of the FINN model and the QONNX model should match."
# Run QONNX to FINN conversion
model = ModelWrapper(qonnx_base_path.format("clean"))
model = model.transform(ConvertQONNXtoFINN())
model.save(qonnx_base_path.format("whole_trafo"))
# Compare output
model = ModelWrapper(qonnx_base_path.format("whole_trafo"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
test_output = output_dict[model.graph.output[0].name]

Hendrik Borras
committed
assert np.isclose(test_output, finn_export_output, atol=ATOL).all(), (
"The output of the FINN model "
"and the QONNX -> FINN converted model should match."
)
# Run analysis passes on the converted model
model = ModelWrapper(qonnx_base_path.format("whole_trafo"))
_ = model.analysis(analysis_testing_for_no_quant_nodes)
temp_dir.cleanup()