Skip to content
Snippets Groups Projects
Commit ec408810 authored by Hendrik Borras's avatar Hendrik Borras
Browse files

Added test for QONNX to FINN conversion with FINN sample models.

parent 749f6019
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2021, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pkg_resources as pk
import pytest
import brevitas.onnx as bo
import numpy as np
import onnx
import onnx.numpy_helper as nph
from brevitas.export.onnx.generic.manager import BrevitasONNXManager
from pkgutil import get_data
from qonnx.util.cleanup import cleanup
from tempfile import TemporaryDirectory
import finn.core.onnx_exec as oxe
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.convert_qonnx_to_finn import ConvertQONNXtoFINN
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.general import GiveUniqueNodeNames, RemoveStaticGraphInputs
from finn.transformation.infer_shapes import InferShapes
from finn.util.test import get_test_model_trained
def get_brev_model_and_sample_inputs(model_name, wbits, abits):
brev_model = get_test_model_trained(model_name, wbits, abits)
if "FC" in model_name:
in_shape = (1, 1, 28, 28)
raw_i = get_data("finn.data", "onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
input_tensor = nph.to_array(input_tensor)
elif model_name == "CNV":
in_shape = (1, 3, 32, 32)
fn = pk.resource_filename(
"finn.qnn-data", "cifar10/cifar10-test-data-class3.npz"
)
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
input_tensor = input_tensor / 255
else:
raise RuntimeError(f"The model with the name {model_name} is not supported.")
return brev_model, in_shape, input_tensor
# ToDo: Add KWS networks, when they are ready to be added to finn-base.
# ToDo: Add RadioML_VGG10, if possible
@pytest.mark.parametrize("abits", [1, 2])
@pytest.mark.parametrize("wbits", [1, 2])
@pytest.mark.parametrize("model_name", ["TFC", "SFC", "LFC", "CNV"])
def test_QONNX_to_FINN(model_name, wbits, abits):
if wbits > abits:
pytest.skip("No wbits > abits cases at the moment")
if model_name == "LFC" and wbits == 2 and abits == 2:
pytest.skip("No LFC-w2a2 present at the moment")
# ToDo: Remove the following restriction when QONNX supports binary operations.
if wbits == 1 or abits == 1:
pytest.skip("wbits == 1 or abits == 1 is currently not supported by QONNX.")
brev_model, in_shape, input_tensor = get_brev_model_and_sample_inputs(
model_name, wbits, abits
)
temp_dir = TemporaryDirectory()
qonnx_base_path = temp_dir.name + "/qonnx_{}.onnx"
finn_base_path = temp_dir.name + "/finn_{}.onnx"
# Get "clean" FINN model and it's output
_ = bo.export_finn_onnx(brev_model, in_shape, finn_base_path.format("raw"))
model = ModelWrapper(finn_base_path.format("raw"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(RemoveStaticGraphInputs())
model.save(finn_base_path.format("clean"))
model = ModelWrapper(finn_base_path.format("clean"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
finn_export_output = output_dict[model.graph.output[0].name]
# Get the equivalent QONNX model
_ = BrevitasONNXManager.export(brev_model, in_shape, qonnx_base_path.format("raw"))
cleanup(qonnx_base_path.format("raw"), out_file=qonnx_base_path.format("clean"))
# Compare output
model = ModelWrapper(qonnx_base_path.format("clean"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
qonnx_export_output = output_dict[model.graph.output[0].name]
assert np.isclose(
qonnx_export_output, finn_export_output
).all(), "The output of the FINN model and the QONNX model should match."
# Run QONNX to FINN conversion
model = ModelWrapper(qonnx_base_path.format("clean"))
model = model.transform(ConvertQONNXtoFINN())
model.save(qonnx_base_path.format("whole_trafo"))
# Compare output
model = ModelWrapper(qonnx_base_path.format("whole_trafo"))
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, False)
test_output = output_dict[model.graph.output[0].name]
assert np.isclose(test_output, finn_export_output).all(), (
"The output of the FINN model "
"and the QONNX -> FINN converted model should match."
)
temp_dir.cleanup()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment