Skip to content
Snippets Groups Projects
Commit c826ef5e authored by auphelia's avatar auphelia
Browse files

[Test] Add test for move channelwise add past conv

parent e96ca0f2
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
import numpy as np
from onnx import helper, TensorProto
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline.reorder import MoveAddPastConv
from finn.custom_op.im2col import compute_conv_output_dim
import finn.core.onnx_exec as oxe
# input dimension
@pytest.mark.parametrize("idim", [4, 7])
# kernel size
@pytest.mark.parametrize("k", [2, 3])
# stride
@pytest.mark.parametrize("s", [1, 2])
# input channels
@pytest.mark.parametrize("ich", [2, 4])
# output channels
@pytest.mark.parametrize("och", [2, 3])
def test_move_chw_add_past_conv(idim, k, s, ich, och):
odim = compute_conv_output_dim(idim, k, s)
ishape = [1, ich, idim, idim]
oshape = [1, och, odim, odim]
add_param_shape = [1, ich, 1, 1]
conv_param_shape = [och, ich, k, k]
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape)
outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape)
a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, add_param_shape)
a1 = helper.make_tensor_value_info("a1", TensorProto.FLOAT, conv_param_shape)
conv_config = {}
conv_config["dilations"] = [1, 1]
conv_config["group"] = 1
conv_config["kernel_shape"] = [k, k]
conv_config["pads"] = [0, 0, 0, 0]
conv_config["strides"] = [s, s]
add_node = helper.make_node("Add", ["inp", "a0"], ["add_out"])
conv_node = helper.make_node("Conv", ["add_out", "a1"], ["outp"], **conv_config)
model = helper.make_model(
helper.make_graph(
nodes=[add_node, conv_node],
name="move-add-graph",
inputs=[inp],
outputs=[outp],
value_info=[a0, a1],
)
)
model = ModelWrapper(model)
# initialize model
a0_values = np.random.uniform(low=0, high=1, size=tuple(add_param_shape)).astype(
np.float32
)
model.set_initializer("a0", a0_values)
a1_values = np.random.uniform(low=0, high=1, size=tuple(conv_param_shape)).astype(
np.float32
)
model.set_initializer("a1", a1_values)
model = model.transform(InferShapes())
# execution before transformation
inp_values = np.random.uniform(low=0, high=1, size=tuple(ishape)).astype(np.float32)
idict = {model.graph.input[0].name: inp_values}
odict = oxe.execute_onnx(model, idict)
y_before = odict[model.graph.output[0].name]
model = model.transform(MoveAddPastConv())
odict = oxe.execute_onnx(model, idict)
y_after = odict[model.graph.output[0].name]
assert np.isclose(y_before, y_after).all()
assert model.graph.node[0].op_type == "Conv"
assert model.graph.node[1].op_type == "Add"
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment