diff --git a/tests/transformation/test_move_chw_add_past_conv.py b/tests/transformation/test_move_chw_add_past_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..b626f7e5b8564739ec383aaddfc262d642bf47cc --- /dev/null +++ b/tests/transformation/test_move_chw_add_past_conv.py @@ -0,0 +1,109 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest + +import numpy as np +from onnx import helper, TensorProto + +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline.reorder import MoveAddPastConv +from finn.custom_op.im2col import compute_conv_output_dim +import finn.core.onnx_exec as oxe + + +# input dimension +@pytest.mark.parametrize("idim", [4, 7]) +# kernel size +@pytest.mark.parametrize("k", [2, 3]) +# stride +@pytest.mark.parametrize("s", [1, 2]) +# input channels +@pytest.mark.parametrize("ich", [2, 4]) +# output channels +@pytest.mark.parametrize("och", [2, 3]) +def test_move_chw_add_past_conv(idim, k, s, ich, och): + odim = compute_conv_output_dim(idim, k, s) + + ishape = [1, ich, idim, idim] + oshape = [1, och, odim, odim] + add_param_shape = [1, ich, 1, 1] + conv_param_shape = [och, ich, k, k] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape) + a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, add_param_shape) + a1 = helper.make_tensor_value_info("a1", TensorProto.FLOAT, conv_param_shape) + + conv_config = {} + conv_config["dilations"] = [1, 1] + conv_config["group"] = 1 + conv_config["kernel_shape"] = [k, k] + conv_config["pads"] = [0, 0, 0, 0] + conv_config["strides"] = [s, s] + + add_node = helper.make_node("Add", ["inp", "a0"], ["add_out"]) + conv_node = helper.make_node("Conv", ["add_out", "a1"], ["outp"], **conv_config) + + model = helper.make_model( + helper.make_graph( + nodes=[add_node, conv_node], + name="move-add-graph", + inputs=[inp], + outputs=[outp], + value_info=[a0, a1], + ) + ) + + model = ModelWrapper(model) + # initialize model + a0_values = np.random.uniform(low=0, high=1, size=tuple(add_param_shape)).astype( + np.float32 + ) + model.set_initializer("a0", a0_values) + a1_values = np.random.uniform(low=0, high=1, size=tuple(conv_param_shape)).astype( + np.float32 + ) + model.set_initializer("a1", a1_values) + + model = model.transform(InferShapes()) + + # execution before transformation + inp_values = np.random.uniform(low=0, high=1, size=tuple(ishape)).astype(np.float32) + idict = {model.graph.input[0].name: inp_values} + odict = oxe.execute_onnx(model, idict) + y_before = odict[model.graph.output[0].name] + + model = model.transform(MoveAddPastConv()) + odict = oxe.execute_onnx(model, idict) + y_after = odict[model.graph.output[0].name] + + assert np.isclose(y_before, y_after).all() + assert model.graph.node[0].op_type == "Conv" + assert model.graph.node[1].op_type == "Add"