Skip to content
Snippets Groups Projects
Commit 73b4930c authored by Lucian Petrică's avatar Lucian Petrică
Browse files

Draft code for transformation to insert a top-k node at the output of the graph

parent af828f3f
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from onnx import TensorProto
from onnx import helper as oh
from finn.custom_op.registry import getCustomOp
from finn.transformation import Transformation
class InsertTopK(Transformation):
"""Add TopK node at the network output."""
def __init__(self, k=5, axis=-1, largest=1, sorted=1):
super().__init__()
self.k = k
self.axis = axis
self.largest = largest
self.sorted = sorted
def apply(self, model):
# get name of output tensor
graph_out_name = model.graph.output[0].name
# find final node
final_node = model.find_producer(graph_out_name)
# if a top-select op is already present, do nothing
if final_node.op_type == "TopK":
return (model, False)
else:
out_shape = model.get_tensor_shape(graph_out_name)
out_dtype = model.get_tensor_datatype(graph_out_name)
#adjust shape
out_shape[self.axis] = self.k
import pdb; pdb.set_trace()
# make new buffer
k_tensor = oh.make_tensor(name='k_tensor',
data_type=TensorProto.INT64,
dims=(1,),
vals=np.array([self.k]).astype(np.int64))
k_value = oh.make_tensor_value_info(
model.make_new_valueinfo_name(), TensorProto.INT64, [1]
)
topk_values = oh.make_tensor_value_info(
model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape
)
topk_indices = oh.make_tensor_value_info(
model.make_new_valueinfo_name(), TensorProto.INT64, out_shape
)
model.graph.value_info.append(k_value)
model.set_tensor_datatype(k_value.name, out_dtype)#TODO set to int64
model.graph.value_info.append(topk_values)
model.set_tensor_datatype(topk_values.name, out_dtype)
model.graph.value_info.append(topk_indices)
model.set_tensor_datatype(topk_indices.name, out_dtype)
#create and append topk node
k_node = oh.make_node(
'Constant',
inputs=[],
outputs=[k_value.name],
value=k_tensor
)
topk_node = oh.make_node(
'TopK',
inputs=[graph_out_name, k_value.name],
outputs=[topk_values.name, topk_indices.name],
axis=self.axis,
)
model.graph.node.append(k_node)
model.graph.node.append(topk_node)
model.graph.output[0].name = topk_values.name
print(topk_indices.name,topk_values.name)
return (model, True)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment