From 73b4930cc246490e43111e07c436b32cd677c203 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lucian=20Petric=C4=83?= <lucian.petrica@upb.ro> Date: Wed, 29 Apr 2020 15:38:39 +0100 Subject: [PATCH] Draft code for transformation to insert a top-k node at the output of the graph --- src/finn/transformation/insert_topk.py | 101 +++++++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 src/finn/transformation/insert_topk.py diff --git a/src/finn/transformation/insert_topk.py b/src/finn/transformation/insert_topk.py new file mode 100644 index 000000000..30b0fff7a --- /dev/null +++ b/src/finn/transformation/insert_topk.py @@ -0,0 +1,101 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np + +from onnx import TensorProto +from onnx import helper as oh + +from finn.custom_op.registry import getCustomOp +from finn.transformation import Transformation + + +class InsertTopK(Transformation): + """Add TopK node at the network output.""" + + def __init__(self, k=5, axis=-1, largest=1, sorted=1): + super().__init__() + self.k = k + self.axis = axis + self.largest = largest + self.sorted = sorted + + def apply(self, model): + # get name of output tensor + graph_out_name = model.graph.output[0].name + # find final node + final_node = model.find_producer(graph_out_name) + # if a top-select op is already present, do nothing + if final_node.op_type == "TopK": + return (model, False) + else: + out_shape = model.get_tensor_shape(graph_out_name) + out_dtype = model.get_tensor_datatype(graph_out_name) + #adjust shape + out_shape[self.axis] = self.k + import pdb; pdb.set_trace() + # make new buffer + k_tensor = oh.make_tensor(name='k_tensor', + data_type=TensorProto.INT64, + dims=(1,), + vals=np.array([self.k]).astype(np.int64)) + k_value = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, [1] + ) + topk_values = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape + ) + topk_indices = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, out_shape + ) + model.graph.value_info.append(k_value) + model.set_tensor_datatype(k_value.name, out_dtype)#TODO set to int64 + model.graph.value_info.append(topk_values) + model.set_tensor_datatype(topk_values.name, out_dtype) + model.graph.value_info.append(topk_indices) + model.set_tensor_datatype(topk_indices.name, out_dtype) + #create and append topk node + k_node = oh.make_node( + 'Constant', + inputs=[], + outputs=[k_value.name], + value=k_tensor + ) + topk_node = oh.make_node( + 'TopK', + inputs=[graph_out_name, k_value.name], + outputs=[topk_values.name, topk_indices.name], + axis=self.axis, + + ) + model.graph.node.append(k_node) + model.graph.node.append(topk_node) + model.graph.output[0].name = topk_values.name + print(topk_indices.name,topk_values.name) + return (model, True) + -- GitLab