Skip to content
Snippets Groups Projects
Commit 7233107e authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] flesh out new FIFO sizing test

parent a88d25b6
No related branches found
No related tags found
No related merge requests found
......@@ -28,76 +28,105 @@
import pkg_resources as pk
import pytest
import json
import numpy as np
import shutil
from qonnx.custom_op.registry import getCustomOp
from qonnx.transformation.general import GiveUniqueNodeNames
import finn.builder.build_dataflow as build
import finn.builder.build_dataflow_config as build_cfg
from finn.analysis.fpgadataflow.dataflow_performance import dataflow_performance
from finn.transformation.fpgadataflow.derive_characteristic import DeriveCharacteristic
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.insert_dwc import InsertDWC
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
from finn.util.basic import make_build_dir
def custom_step_fifosize(model, cfg):
# TODO convert to NodeLocalTransformation
def accumulate_char_fxn(chrc):
p = len(chrc)
ret = []
for t in range(2 * p):
if t == 0:
ret.append(chrc[0])
else:
ret.append(ret[-1] + chrc[t % p])
return ret
# TODO handle chrc for input and output nodes
all_act_tensors = [x.name for x in model.graph.value_info]
for tensor_nm in all_act_tensors:
# generate accumulated characteristic functions
prod = getCustomOp(model.find_producer(tensor_nm))
prod = model.find_producer(tensor_nm)
cons = model.find_consumer(tensor_nm)
if prod is None or cons is None:
continue
prod = getCustomOp(prod)
period = prod.get_nodeattr("io_characteristic_period")
prod_chrc = prod.get_nodeattr("io_characteristic")
prod_chrc = np.asarray(prod_chrc, dtype=np.uint8).reshape(2, -1)[1]
prod_chrc = accumulate_char_fxn(prod_chrc)
cons = getCustomOp(model.find_consumer(tensor_nm))
prod_chrc = np.asarray(prod_chrc).reshape(2, -1)[1]
cons = getCustomOp(cons)
cons_chrc = cons.get_nodeattr("io_characteristic")
cons_chrc = np.asarray(cons_chrc, dtype=np.uint8).reshape(2, -1)[0]
cons_chrc = accumulate_char_fxn(cons_chrc)
# TODO find minimum phase shift
for node in model.graph.node:
inst = getCustomOp(node)
chrc = inst.get_nodeattr("io_characteristic")
chrc = np.asarray(chrc, dtype=np.uint8).reshape(2, -1)
cons_chrc = np.asarray(cons_chrc).reshape(2, -1)[0]
# find minimum phase shift satisfying the constraint
pshift_min = period
for pshift_cand in range(period):
pshift_condition = [
(prod_chrc[i + pshift_cand] >= cons_chrc[i])
for i in range(period - pshift_cand)
]
if all(pshift_condition):
pshift_min = pshift_cand
break
fifo_depth = max(
[(prod_chrc[i + pshift_cand] - cons_chrc[i]) for i in range(pshift_min)]
)
prod.set_nodeattr("outFIFODepth", fifo_depth)
cons.set_nodeattr("inFIFODepth", fifo_depth)
return model
def custom_step_fifocharacterize(model, cfg):
model = model.transform(InsertDWC())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(
PrepareIP(cfg._resolve_fpga_part(), cfg._resolve_hls_clk_period())
)
model = model.transform(HLSSynthIP())
model = model.transform(PrepareRTLSim())
period = model.analysis(dataflow_performance)["max_cycles"] + 10
model = model.transform(DeriveCharacteristic(period))
return model
def test_end2end_fifosizing():
@pytest.mark.slow
@pytest.mark.vivado
def test_fifosizing():
chkpt_name = pk.resource_filename("finn.qnn-data", "build_dataflow/model.onnx")
tmp_output_dir = make_build_dir("build_fifosizing_")
# tmp_output_dir = "/tmp/finn_dev_maltanar/build_fifosizing_5mt0o6s_"
steps = build_cfg.default_build_dataflow_steps
steps = steps[:10]
steps.append(custom_step_fifocharacterize)
# steps.append(custom_step_fifosize)
steps.insert(10, custom_step_fifocharacterize)
steps.insert(11, custom_step_fifosize)
cfg = build_cfg.DataflowBuildConfig(
output_dir=tmp_output_dir,
auto_fifo_depths=False,
target_fps=10000,
synth_clk_period_ns=10.0,
board="Pynq-Z1",
rtlsim_batch_size=100,
shell_flow_type=build_cfg.ShellFlowType.VIVADO_ZYNQ,
generate_outputs=[],
generate_outputs=[
build_cfg.DataflowOutputType.ESTIMATE_REPORTS,
build_cfg.DataflowOutputType.STITCHED_IP,
build_cfg.DataflowOutputType.RTLSIM_PERFORMANCE,
],
steps=steps,
default_mem_mode=build_cfg.ComputeEngineMemMode.CONST,
start_step="custom_step_fifocharacterize",
default_mem_mode=build_cfg.ComputeEngineMemMode.DECOUPLED,
)
build.build_dataflow_cfg(chkpt_name, cfg)
with open(tmp_output_dir + "/report/estimate_network_performance.json") as f:
est_data = json.load(f)
with open(tmp_output_dir + "/report/rtlsim_performance.json") as f:
sim_data = json.load(f)
assert (
float(sim_data["throughput[images/s]"])
/ float(est_data["estimated_throughput_fps"])
> 0.9
)
shutil.rmtree(tmp_output_dir)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment