Skip to content
Snippets Groups Projects
Commit 0ba9434f authored by Tobi-Alonso's avatar Tobi-Alonso
Browse files

[Test] Add test for LowerConvsToMatMul applied to conv with kernel size 1x1,...

[Test] Add test for LowerConvsToMatMul applied to conv with  kernel size 1x1, stride == 1 and no padding
parent 4f7f1b93
No related branches found
No related tags found
No related merge requests found
......@@ -26,12 +26,13 @@
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import onnx.helper as oh
from onnx import TensorProto
import os
import pkg_resources as pk
import brevitas.onnx as bo
import numpy as np
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.infer_shapes import InferShapes
......@@ -65,3 +66,51 @@ def test_conv_lowering_cnv_w1a1():
assert np.isclose(produced, expected).all()
assert np.argmax(produced) == 3
os.remove(export_onnx_path)
def test_conv_lowering_conv_1x1():
np.random.seed(0)
in_feature_dim = 7
in_chn = 3
kernel_size = 1
out_feature_dim = in_feature_dim
input_shape = [1, in_chn, in_feature_dim, in_feature_dim]
output_shape = [1, in_chn, out_feature_dim, out_feature_dim]
conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size]
conv_config = {}
conv_config["dilations"] = [1, 1]
conv_config["group"] = 1
conv_config["kernel_shape"] = [kernel_size, kernel_size]
conv_config["pads"] = [0, 0, 0, 0]
conv_config["strides"] = [1, 1]
top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape)
value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, conv_param_shape)]
modelproto = oh.make_model(
oh.make_graph(
name="test",
inputs=[top_in],
outputs=[top_out],
value_info=value_info,
nodes=[oh.make_node("Conv", ["top_in", "p1"], ["top_out"], **conv_config)],
)
)
model = ModelWrapper(modelproto)
model = model.transform(InferShapes())
model.set_initializer("p1", np.random.rand(*conv_param_shape).astype(np.float32))
new_model = model.transform(LowerConvsToMatMul())
inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
assert oxe.compare_execution(model, new_model, inp_dict)
assert new_model.graph.node[0].op_type == "Transpose"
assert new_model.graph.node[1].op_type == "MatMul"
assert new_model.graph.node[2].op_type == "Transpose"
assert len(new_model.graph.node) == 3
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment