diff --git a/tests/transformation/test_conv_lowering.py b/tests/transformation/test_conv_lowering.py index 2cbc8e558940517168678b05c3bb46af8170abce..73891ded1b9691c7c48a2075ad6ca4668fcf6bfe 100644 --- a/tests/transformation/test_conv_lowering.py +++ b/tests/transformation/test_conv_lowering.py @@ -26,12 +26,13 @@ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +import onnx.helper as oh +from onnx import TensorProto import os import pkg_resources as pk import brevitas.onnx as bo import numpy as np - from finn.core.modelwrapper import ModelWrapper from finn.transformation.fold_constants import FoldConstants from finn.transformation.infer_shapes import InferShapes @@ -65,3 +66,51 @@ def test_conv_lowering_cnv_w1a1(): assert np.isclose(produced, expected).all() assert np.argmax(produced) == 3 os.remove(export_onnx_path) + + +def test_conv_lowering_conv_1x1(): + np.random.seed(0) + + in_feature_dim = 7 + in_chn = 3 + kernel_size = 1 + out_feature_dim = in_feature_dim + + input_shape = [1, in_chn, in_feature_dim, in_feature_dim] + output_shape = [1, in_chn, out_feature_dim, out_feature_dim] + + conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size] + + conv_config = {} + conv_config["dilations"] = [1, 1] + conv_config["group"] = 1 + conv_config["kernel_shape"] = [kernel_size, kernel_size] + conv_config["pads"] = [0, 0, 0, 0] + conv_config["strides"] = [1, 1] + + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape) + + value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, conv_param_shape)] + + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[oh.make_node("Conv", ["top_in", "p1"], ["top_out"], **conv_config)], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + model.set_initializer("p1", np.random.rand(*conv_param_shape).astype(np.float32)) + + new_model = model.transform(LowerConvsToMatMul()) + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + + assert oxe.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "Transpose" + assert new_model.graph.node[1].op_type == "MatMul" + assert new_model.graph.node[2].op_type == "Transpose" + assert len(new_model.graph.node) == 3