test_streamline_cnv.py 3.97 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pkg_resources as pk
import pytest
import numpy as np
import torch
from brevitas.export import export_finn_onnx
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.transformation.fold_constants import FoldConstants
from qonnx.transformation.general import (
GiveReadableTensorNames,
GiveUniqueNodeNames,
RemoveStaticGraphInputs,
RemoveUnusedTensors,
)
from qonnx.transformation.infer_shapes import InferShapes
import finn.core.onnx_exec as oxe
from finn.transformation.streamline import Streamline
from finn.util.basic import make_build_dir
from finn.util.test import get_test_model_trained
export_onnx_path = make_build_dir("test_streamline_cnv_")
@pytest.mark.streamline
# act bits
@pytest.mark.parametrize("abits", [1, 2])
# weight bits
@pytest.mark.parametrize("wbits", [1, 2])
# network topology / size
@pytest.mark.parametrize("size", ["CNV"])
def test_streamline_cnv(size, wbits, abits):
if wbits > abits:
pytest.skip("No wbits > abits cases at the moment")
nname = "%s_%dW%dA" % (size, wbits, abits)
finn_onnx = export_onnx_path + "/%s.onnx" % nname
fc = get_test_model_trained(size, wbits, abits)
export_finn_onnx(fc, torch.randn(1, 3, 32, 32), finn_onnx)
model = ModelWrapper(finn_onnx)
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(RemoveStaticGraphInputs())
# load one of the test vectors
fn = pk.resource_filename("finn.qnn-data", "cifar10/cifar10-test-data-class3.npz")
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
input_tensor = input_tensor / 255
assert input_tensor.shape == (1, 3, 32, 32)
# run using FINN-based execution
input_dict = {"global_in": input_tensor}
expected_ctx = oxe.execute_onnx(model, input_dict, True)
expected = expected_ctx[model.graph.output[0].name]
# model.save("orig_cnv.onnx")
model = model.transform(Streamline())
model = model.transform(RemoveUnusedTensors())
assert len(model.graph.initializer) == 21
assert len(model.graph.value_info) == 43
# model.save("streamlined_cnv.onnx")
assert len(model.graph.node) == 23
produced_ctx = oxe.execute_onnx(model, input_dict, True)
produced = produced_ctx[model.graph.output[0].name]
assert np.isclose(expected, produced, atol=1e-3).all()
assert model.graph.node[0].op_type == "MultiThreshold"
assert np.argmax(produced) == 3