# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pkg_resources as pk import pytest import numpy as np import torch from brevitas.export import export_finn_onnx from qonnx.core.modelwrapper import ModelWrapper from qonnx.transformation.fold_constants import FoldConstants from qonnx.transformation.general import ( GiveReadableTensorNames, GiveUniqueNodeNames, RemoveStaticGraphInputs, RemoveUnusedTensors, ) from qonnx.transformation.infer_shapes import InferShapes import finn.core.onnx_exec as oxe from finn.transformation.streamline import Streamline from finn.util.basic import make_build_dir from finn.util.test import get_test_model_trained export_onnx_path = make_build_dir("test_streamline_cnv_") @pytest.mark.streamline # act bits @pytest.mark.parametrize("abits", [1, 2]) # weight bits @pytest.mark.parametrize("wbits", [1, 2]) # network topology / size @pytest.mark.parametrize("size", ["CNV"]) def test_streamline_cnv(size, wbits, abits): if wbits > abits: pytest.skip("No wbits > abits cases at the moment") nname = "%s_%dW%dA" % (size, wbits, abits) finn_onnx = export_onnx_path + "/%s.onnx" % nname fc = get_test_model_trained(size, wbits, abits) export_finn_onnx(fc, torch.randn(1, 3, 32, 32), finn_onnx) model = ModelWrapper(finn_onnx) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(RemoveStaticGraphInputs()) # load one of the test vectors fn = pk.resource_filename("finn.qnn-data", "cifar10/cifar10-test-data-class3.npz") input_tensor = np.load(fn)["arr_0"].astype(np.float32) input_tensor = input_tensor / 255 assert input_tensor.shape == (1, 3, 32, 32) # run using FINN-based execution input_dict = {"global_in": input_tensor} expected_ctx = oxe.execute_onnx(model, input_dict, True) expected = expected_ctx[model.graph.output[0].name] # model.save("orig_cnv.onnx") model = model.transform(Streamline()) model = model.transform(RemoveUnusedTensors()) assert len(model.graph.initializer) == 21 assert len(model.graph.value_info) == 43 # model.save("streamlined_cnv.onnx") assert len(model.graph.node) == 23 produced_ctx = oxe.execute_onnx(model, input_dict, True) produced = produced_ctx[model.graph.output[0].name] assert np.isclose(expected, produced, atol=1e-3).all() assert model.graph.node[0].op_type == "MultiThreshold" assert np.argmax(produced) == 3