Skip to content
Snippets Groups Projects
Select Git revision
  • accl default
  • adegendt/accl_clone
  • dev
  • full_accl_support
  • georg/accl-build
  • georg/accl-complete
  • georg/accl-finn
  • georg/end2end
  • main protected
9 results
You can move around the graph by using the arrow keys.
Created with Raphaël 2.2.012Oct11108764130Sep292827242322212019171613121098731Aug30272320191716131210965426Jul23151312653230Jun282524232117151410987543130May28262520181716141110987653130Apr2927232221201918151412109826Mar25242317543226Feb242322181211108764131Jan29262120171517Dec161413983124Nov231996530Oct282726222120191514131211109876529Sep272625242321201817161514121110Merge pull request #390 from Xilinx/feature/fixed_point_datatype[Notebook] clear outputs for 1_brevitas_network_import.ipynbExtended analysis pass for test_QONNX_to_FINN to look for left over BinaryQuant nodes.Raised default for max_multithreshold_bit_width from 4 to 8, due to missing quantization for 8-bit input test networks (CNV and mobilenet).Added support for filtering which Quant nodes to convert to MultiThreshold nodes.[Notebook] update notebooks with DataType.X -> DataType["X"][Deps] update finn-base[Deps] update to latest finn-baseHandle the out_dtype attribute of MultiThreshold nodes more appropriately.[Test] add float32 case to test_npy2apintstream[Deps] update finn-baseSplit convert_qonnx_to_finn.py file into multiple.Renamed QONNX to FINN verification step to QONNX_TO_FINN_PYTHON.Made QONNX to FINN a default build step, changed verification step name and made running of conversion conditional on the existence of quant nodes.Install finn-base with commit from qonnx-branch + install qonnx w/o deps.[CustomOp] fix dtype name in Thresholding op msgSmall updates to QuantActBaseHandler documentation.[Refactor] use RandomNormal for faster/more compact shape inference[Deps] update finn-base to get faster shape inference base ops[Refactor] use get_accumulator_dt_cands as part of DataType rf.[Deps] update finn-baseAdded support for moving scalar ops, which are not flat.[Pack, Test] fix npy<>stream packing for fixed pt, add test[Refactor] Datatype.X -> DataType["X"][Deps] update finn-base to get refactored dtypes+fixed-pointSmall refactoring for QONNX activation handlers.Add optional support for QONNX ingestion in the dataflow builder.Update qonnx commit.[Test] update expected artifacts in test_build_dataflow_directory[Build] add cfg option to spec rtlsim perf batch size[Build] save autogenerated folding config to .jsonAdded mobilenet to test_QONNX_to_FINN test.Correct for fp accuracy issues during Quant constant folding.Added support for converting Gemm to MatMul.Updated QONNX commit.Catch unsupported constant folding for SCALED datatypes.Added support for FoldQuantWeights into Add nodes.Updated QONNX commit.Merge pull request #379 from jterry-x/masterMerge pull request #382 from Xilinx/fix/fclk_override
Loading