Skip to content
Snippets Groups Projects
Commit fcc457e5 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Transform] reiterated fixes for AbsorbAdd/Mul

parent 772bb826
No related branches found
No related tags found
No related merge requests found
......@@ -26,8 +26,8 @@ class AbsorbAddIntoMultiThreshold(Transformation):
assert T is not None
start_name = n.input[0]
# we can only absorb 0d or 1d adds
is_scalar = all(x == 1 for x in A.shape)
is_1d = np.prod(A.shape) == A.shape[-1]
is_scalar = A.ndim == 0 or all(x == 1 for x in A.shape)
is_1d = A.ndim > 0 and np.prod(A.shape) == A.shape[-1]
if is_scalar or is_1d:
Tnew = T - A.reshape(-1, 1)
# Tnew = T - A.reshape(-1, T.shape[1])
......@@ -56,8 +56,8 @@ class AbsorbMulIntoMultiThreshold(Transformation):
A = model.get_initializer(mul_weight_name)
assert A is not None
is_signed = (A < 0).any()
is_scalar = np.prod(A.shape) == 1
is_1d = len(A.shape) == 2 and A.shape[0] == 1
is_scalar = A.ndim == 0 or all(x == 1 for x in A.shape)
is_1d = A.ndim > 0 and np.prod(A.shape) == A.shape[-1]
consumer = model.find_consumer(n.output[0])
if consumer is not None and consumer.op_type == "MultiThreshold":
if not is_signed and (is_1d or is_scalar):
......@@ -66,7 +66,7 @@ class AbsorbMulIntoMultiThreshold(Transformation):
assert T is not None
start_name = n.input[0]
# compute new thresholds and set initializer
Tnew = T / A.reshape(-1, T.shape[1])
Tnew = T / A.reshape(-1, 1)
# TODO: need to handle negative A values correctly; produce
# mul sign mask and merge into preceding matmul?
model.set_initializer(threshold_name, Tnew)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment