Skip to content
Snippets Groups Projects
Unverified Commit e47e37c0 authored by Yaman Umuroglu's avatar Yaman Umuroglu Committed by GitHub
Browse files

Merge pull request #182 from quetric/feature/fix_labelselect

Feature/fix Labelselect folding and optimize output
parents 971af018 61bc2107
No related branches found
No related tags found
No related merge requests found
......@@ -41,6 +41,13 @@ class LabelSelect_Batch(HLSCustomOp):
def __init__(self, onnx_node):
super().__init__(onnx_node)
odt_name = self.get_nodeattr("outputDataType")
if odt_name == "":
# If not provided compute min size
labels = self.get_nodeattr("Labels")
odt = DataType.get_smallest_possible(labels - 1)
odt_name = odt.name
self.set_nodeattr("outputDataType", odt_name)
def get_nodeattr_types(self):
my_attrs = {
......@@ -49,6 +56,7 @@ class LabelSelect_Batch(HLSCustomOp):
"K": ("i", True, 0),
# FINN DataTypes for input
"inputDataType": ("s", True, ""),
"outputDataType": ("s", False, ""),
# number of input vectors, examples:
# [1] is a single vector (like a FC layer with batch=1)
# [4] is four vectors (like a FC layer with batch=4)
......@@ -69,7 +77,6 @@ class LabelSelect_Batch(HLSCustomOp):
pe = self.get_nodeattr("PE")
vecs = list(self.get_nodeattr("numInputVectors"))
assert nlabels % pe == 0, "PE must divide Labels"
assert pe == 1, "LabelSelect currently fails with folding"
folds = int(nlabels / pe)
folded_ishape = tuple(vecs + [folds, pe])
return folded_ishape
......@@ -90,7 +97,7 @@ class LabelSelect_Batch(HLSCustomOp):
exp_ishape = self.get_normal_input_shape()
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape."
assert ishape == exp_ishape, "Unexpected input shape."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.int64)
return helper.make_node(
......@@ -106,9 +113,8 @@ class LabelSelect_Batch(HLSCustomOp):
)
def infer_node_datatype(self, model):
# currently set to uint32 to be compatible with hlslib
# enhancement: consider finding smallest power-of-two int for reduced output bandwidth
model.set_tensor_datatype(self.onnx_node.output[0], DataType.UINT32)
odt = self.get_output_datatype()
model.set_tensor_datatype(self.onnx_node.output[0], odt)
def verify_node(self):
info_messages = []
......@@ -134,6 +140,7 @@ class LabelSelect_Batch(HLSCustomOp):
self.get_nodeattr("PE")
self.get_nodeattr("K")
self.get_nodeattr("inputDataType")
self.get_nodeattr("outputDataType")
info_messages.append("All necessary attributes exist")
except Exception:
info_messages.append(
......@@ -150,12 +157,12 @@ class LabelSelect_Batch(HLSCustomOp):
def get_input_datatype(self):
"""Returns FINN DataType of input."""
ret = DataType[self.get_nodeattr("inputDataType")]
assert ret.signed() is False, "LabelSelect is currently broken for signed inputs"
return ret
def get_output_datatype(self):
"""Returns FINN DataType of output."""
return DataType.UINT32
ret = DataType[self.get_nodeattr("outputDataType")]
return ret
def get_instream_width(self):
"""Returns input stream width."""
......@@ -260,8 +267,13 @@ class LabelSelect_Batch(HLSCustomOp):
npy_type = "float"
npy_in = "%s/input_0.npy" % code_gen_dir
self.code_gen_dict["$READNPYDATA$"] = []
# Calling npy2apintstream with reverse_inner = false to have LE packing
# as required by HLS fxn LabelSelect_Batch
# Also notice that StreamingDataWidthConverter_Batch performs LE packing
self.code_gen_dict["$READNPYDATA$"].append(
'npy2apintstream<%s, %s, %d, %s>("%s", in0);'
'npy2apintstream<%s, %s, %d, %s>("%s", in0,false);'
% (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in)
)
......@@ -277,12 +289,13 @@ class LabelSelect_Batch(HLSCustomOp):
def docompute(self):
node = self.onnx_node
self.code_gen_dict["$DOCOMPUTE$"] = [
"""{}<{}, {}, {}, {}, ap_uint<32>> (in0, out, 1);""".format(
"""{}<{}, {}, {}, {}, {} > (in0, out, 1);""".format(
node.op_type,
self.get_nodeattr("Labels"),
self.get_nodeattr("PE"),
self.get_nodeattr("K"),
self.get_input_datatype().get_hls_datatype_str(),
self.get_output_datatype().get_hls_datatype_str(),
)
]
......@@ -316,10 +329,11 @@ class LabelSelect_Batch(HLSCustomOp):
def blackboxfunction(self):
self.code_gen_dict["$BLACKBOXFUNCTION$"] = [
"""void {}(hls::stream<ap_uint<{}*{}>> &in0,
hls::stream<ap_uint<32>> &out)""".format(
hls::stream<ap_uint<{}> > &out)""".format(
self.onnx_node.name,
self.get_nodeattr("PE"),
self.get_input_datatype().bitwidth(),
self.get_output_datatype().bitwidth(),
)
]
......
......@@ -27,6 +27,7 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
import numpy as np
from onnx import TensorProto, helper
......@@ -70,7 +71,8 @@ def make_labelselect_modelwrapper(labels, pe, k, idt):
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", DataType.UINT32)
odt = DataType.get_smallest_possible(labels - 1)
model.set_tensor_datatype("outp", odt)
return model
......@@ -79,19 +81,18 @@ def prepare_inputs(input_tensor, idt):
return {"inp": input_tensor}
# TODO: folded inputs fail, likely problem in hlslib
# input datatype -- checked by assertion in HLSCustomOp
@pytest.mark.parametrize("idt", [DataType.UINT8, DataType.UINT16])
@pytest.mark.parametrize("idt", [DataType.UINT8, DataType.UINT16, DataType.INT16])
# labels
@pytest.mark.parametrize("labels", [10, 1000])
@pytest.mark.parametrize("labels", [10, 100])
# folding
@pytest.mark.parametrize("fold", [-1])
@pytest.mark.parametrize("fold", [-1, 2, 10])
# number of top labels to select
@pytest.mark.parametrize("k", [1, 5])
# execution mode
@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
@pytest.mark.vivado
def test_fpgadataflow_labelselect(idt, labels, fold, k, exec_mode):
np.random.seed(0)
if fold == -1:
pe = 1
else:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment