Skip to content
Snippets Groups Projects
Commit ca3c9364 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[CnvLower] add a first draft of conv lowering transformation

parent af7a085e
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from onnx import TensorProto
from onnx import helper
from finn.transformation import Transformation
from finn.transformation.infer_shapes import InferShapes
from finn.util.basic import get_by_name
class LowerConvsToMatMul(Transformation):
"""Replace Conv layers with pairs of Im2Col-MatMul layers, plus Transpose
layers to keep the original data layout."""
def apply(self, model):
graph = model.graph
node_ind = 0
graph_modified = False
for n in graph.node:
node_ind += 1
if n.op_type == "Conv":
graph_modified = True
cnv_input = n.input[0]
cnv_output = n.output[0]
# extract conv parameters
k = get_by_name(n.attribute, "kernel_shape")[-1]
pad = get_by_name(n.attribute, "pads")[-1]
stride = get_by_name(n.attribute, "strides")[-1]
weight_name = n.input[1]
W_conv = model.get_initializer(weight_name)
ifm_ch = W_conv.shape[1]
ofm_ch = W_conv.shape[0]
ifm_dim = model.get_tensor_shape(n.input[0])[-1] # assume NCHW
ofm_dim = model.get_tensor_shape(n.output[0])[-1] # assume NCHW
# reuse conv weights for new matmul weights
W_matmul = W_conv.reshape(ofm_ch, ifm_ch * k * k).T
model.set_initializer(weight_name, W_matmul)
# create new intermediate values
inp_trans_out = helper.make_tensor_value_info(
model.make_new_valueinfo_name(),
TensorProto.FLOAT,
(1, ifm_dim, ifm_dim, ifm_ch), # NHWC
)
graph.value_info.append(inp_trans_out)
inp_trans_out = inp_trans_out.name
im2col_out = helper.make_tensor_value_info(
model.make_new_valueinfo_name(),
TensorProto.FLOAT,
(1, ofm_dim, ofm_dim, ifm_ch * k * k),
)
graph.value_info.append(im2col_out)
im2col_out = im2col_out.name
matmul_out = helper.make_tensor_value_info(
model.make_new_valueinfo_name(),
TensorProto.FLOAT,
(1, ofm_dim, ofm_dim, ofm_ch),
)
graph.value_info.append(matmul_out)
matmul_out = matmul_out.name
# create new nodes
# NCHW -> NHWC
inp_trans_node = helper.make_node(
"Transpose", [cnv_input], [inp_trans_out], perm=[0, 2, 3, 1]
)
# lower input tensor
im2col_node = helper.make_node(
"Im2Col",
[inp_trans_out],
[im2col_out],
domain="finn",
stride=stride,
kernel_size=k,
pad_amount=pad,
input_shape="(1,{},{},{})".format(ifm_dim, ifm_dim, ifm_ch),
)
# do matmul
matmul_node = helper.make_node(
"MatMul", [im2col_out, weight_name], [matmul_out]
)
# NHWC -> NCHW
out_trans_node = helper.make_node(
"Transpose", [matmul_out], [cnv_output], perm=[0, 3, 1, 2]
)
# insert nodes where the conv is to preserve topological ordering
graph.node.insert(node_ind, inp_trans_node)
graph.node.insert(node_ind + 1, im2col_node)
graph.node.insert(node_ind + 2, matmul_node)
graph.node.insert(node_ind + 3, out_trans_node)
# remove old nodes
graph.node.remove(n)
model = model.transform(InferShapes())
return (model, graph_modified)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment