Skip to content
Snippets Groups Projects
Commit c2c6f108 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] split ConvertToHLS tests into cnv and fc

parent e825879d
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import pkg_resources as pk
import brevitas.onnx as bo
import numpy as np
import finn.core.onnx_exec as oxe
import finn.transformation.streamline.absorb as absorb
from finn.transformation.streamline.reorder import MakeMaxPoolNHWC
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
from finn.util.test import get_test_model_trained
from finn.transformation.double_to_single_float import DoubleToSingleFloat
from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
export_onnx_path_cnv = "test_output_cnv.onnx"
def test_convert_to_hls_layers_cnv_w1a1():
cnv = get_test_model_trained("CNV", 1, 1)
bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv)
model = ModelWrapper(export_onnx_path_cnv)
model = model.transform(DoubleToSingleFloat())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(Streamline())
model.save("cnv-streamline.onnx")
# load one of the test vectors
fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
assert input_tensor.shape == (1, 3, 32, 32)
# generate expected value from streamlined net
input_dict = {"global_in": input_tensor}
expected_ctx = oxe.execute_onnx(model, input_dict, True)
expected = expected_ctx[model.graph.output[0].name]
model = model.transform(LowerConvsToMatMul())
model = model.transform(MakeMaxPoolNHWC())
model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
model.save("cnv-lower.onnx")
produced_ctx = oxe.execute_onnx(model, input_dict, True)
produced = produced_ctx[model.graph.output[0].name]
assert np.isclose(expected, produced, atol=1e-3).all()
os.remove(export_onnx_path_cnv)
......@@ -38,7 +38,6 @@ import torch
import finn.core.onnx_exec as oxe
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
import finn.transformation.streamline.absorb as absorb
from finn.transformation.streamline.reorder import MakeMaxPoolNHWC
from finn.core.modelwrapper import ModelWrapper
from finn.custom_op.registry import getCustomOp
from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
......@@ -51,8 +50,7 @@ from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds
from finn.util.test import get_test_model_trained
from finn.transformation.double_to_single_float import DoubleToSingleFloat
from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
export_onnx_path = "test_output_tfc.onnx"
export_onnx_path_cnv = "test_output_cnv.onnx"
......@@ -127,23 +125,6 @@ def test_convert_to_hls_layers_tfc_w1a1():
assert np.isclose(produced, expected, atol=1e-3).all()
def test_convert_to_hls_layers_cnv_w1a1():
tfc = get_test_model_trained("CNV", 1, 1)
bo.export_finn_onnx(tfc, (1, 3, 32, 32), export_onnx_path)
model = ModelWrapper(export_onnx_path_cnv)
model = model.transform(DoubleToSingleFloat())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(Streamline())
model.save("cnv-streamline.onnx")
model = model.transform(LowerConvsToMatMul())
model = model.transform(MakeMaxPoolNHWC())
model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
model.save("cnv-lower.onnx")
def test_convert_to_hls_layers_tfc_w1a2():
tfc = get_test_model_trained("TFC", 1, 2)
bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment