Skip to content
Snippets Groups Projects
Commit c2a6a615 authored by auphelia's avatar auphelia
Browse files

[Transform] Fix some bug in MergeONNXModels

parent cf8719a6
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import copy
from onnx import helper
from finn.transformation import Transformation
......@@ -53,23 +82,40 @@ def _make_model_values_unique(model1, model2):
class MergeONNXModels(Transformation):
def __init__(self, pre_proc_model):
"""Merges two models. The model passed in the transformation will be inserted before
the model the transformation is applied on, the resulting model is returned."""
def __init__(self, pre_model):
super().__init__()
self.pre_proc_model = pre_proc_model
# use deep copy of model that should be inserted in the beginning of
# the other model to ensure that it stays unchanged
self.pre_model = copy.deepcopy(pre_model)
def apply(self, model):
graph_modified = False
pre_proc_model = self.pre_proc_model
pre_model = self.pre_model
(pre_proc_model, model) = _make_model_values_unique(pre_proc_model, model)
(pre_model, model) = _make_model_values_unique(pre_model, model)
node_list_a = pre_proc_model.graph.node
# check if models can be merged
output_model_a = pre_model.graph.output[0].name
input_model_b = model.graph.input[0].name
output_a_shape = pre_model.get_tensor_shape(output_model_a)
input_b_shape = model.get_tensor_shape(input_model_b)
assert (
output_a_shape == input_b_shape
), "Models can't be merged! Shapes don't match."
for n in pre_model.graph.node:
if output_model_a == n.output[0]:
n.output[0] = input_model_b
node_list_a = pre_model.graph.node
node_list_b = model.graph.node
node_list = node_list_a
node_list[-1].output[0] = node_list_b[0].input[0]
for node in node_list_b:
node_list.append(node)
inp = pre_proc_model.graph.input[0]
inp = pre_model.graph.input[0]
outp = model.graph.output[0]
new_graph = helper.make_graph(
nodes=node_list,
......@@ -81,14 +127,14 @@ class MergeONNXModels(Transformation):
new_model = helper.make_model(new_graph, producer_name="fuse_model")
new_model = ModelWrapper(new_model)
vi_preproc = [x for x in pre_proc_model.graph.input]
vi_preproc += [x for x in pre_proc_model.graph.output]
vi_preproc += [x for x in pre_proc_model.graph.value_info]
vi_preproc = [x for x in pre_model.graph.input]
vi_preproc += [x for x in pre_model.graph.output]
vi_preproc += [x for x in pre_model.graph.value_info]
for vi in vi_preproc:
if vi == inp:
continue
new_model.graph.value_info.append(vi)
init_val = pre_proc_model.get_initializer(vi.name)
init_val = pre_model.get_initializer(vi.name)
if init_val is not None:
new_model.set_initializer(vi.name, init_val)
vi_model = [x for x in model.graph.input]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment