Skip to content
Snippets Groups Projects
Commit bfaea47a authored by auphelia's avatar auphelia
Browse files

[Test] Add test for MoveFlattenPastAffine

parent e9aa670f
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from onnx import TensorProto, helper
from finn.core.modelwrapper import ModelWrapper
from finn.core.datatype import DataType
from finn.util.basic import gen_finn_dt_tensor
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames
from finn.transformation.streamline.reorder import MoveFlattenPastAffine
import finn.core.onnx_exec as oxe
def test_move_flatten_past_affine():
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 1, 1, 1024])
a0 = helper.make_tensor_value_info("a1", TensorProto.FLOAT, [1024, 1000])
a1 = helper.make_tensor_value_info("a2", TensorProto.FLOAT, [])
a2 = helper.make_tensor_value_info("a3", TensorProto.FLOAT, [1000])
outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 1000])
flatten_node = helper.make_node("Flatten", ["inp"], ["flatten_out"])
matmul_node = helper.make_node("MatMul", ["flatten_out", "a0"], ["matmul_out"])
mul_node = helper.make_node("Mul", ["matmul_out", "a1"], ["mul_out"])
add_node = helper.make_node("Add", ["mul_out", "a2"], ["outp"])
graph = helper.make_graph(
nodes=[flatten_node, matmul_node, mul_node, add_node],
name="move-reshape-graph",
inputs=[inp],
outputs=[outp],
value_info=[a0, a1, a2],
)
model = helper.make_model(graph, producer_name="move_reshape_model")
model = ModelWrapper(model)
# initialize values
a0_values = gen_finn_dt_tensor(DataType.TERNARY, [1024, 1000])
model.set_initializer("a0", a0_values)
a1_values = np.random.uniform(low=0.1, high=0.99, size=(1)).astype(np.float32)
model.set_initializer("a1", a1_values)
a2_values = np.random.uniform(low=-1, high=1, size=(1000)).astype(np.float32)
model.set_initializer("a2", a2_values)
model.set_tensor_datatype("inp", DataType.INT2)
model.set_tensor_datatype("flatten_out", DataType.INT2)
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
# compare execution before and after transformation
inp_values = gen_finn_dt_tensor(DataType.INT2, [1, 1, 1, 1024])
idict = {"inp": inp_values}
model_transformed = model.transform(MoveFlattenPastAffine())
assert oxe.compare_execution(model, model_transformed, idict)
# check if nodes have new order in transformed graph
assert model.graph != model_transformed.graph
assert model_transformed.graph.node[-1].op_type == "Flatten"
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment