Skip to content
Snippets Groups Projects
Commit af2b7422 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] add more ZynqBuild tests for tfc-w2a2 and cnv-w1a1

parent 217660a9
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import pytest
import numpy as np
# as of Feb'20 there is a bug that segfaults ONNX shape inference if we
# import pytorch before onnx, so we make sure to import onnx first
import onnx # NOQA
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
import finn.transformation.streamline.absorb as absorb
from finn.core.onnx_exec import execute_onnx
from finn.custom_op.registry import getCustomOp
from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.fpgadataflow.create_dataflow_partition import (
CreateDataflowPartition,
)
from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ
from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver
from finn.transformation.general import (
RemoveUnusedTensors,
RemoveStaticGraphInputs,
GiveReadableTensorNames,
GiveUniqueNodeNames,
)
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
from finn.util.basic import pynq_part_map
from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip
from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources
from finn.transformation.fpgadataflow.make_zynq_proj import ZynqBuild
import pkg_resources as pk
from finn.transformation.double_to_single_float import DoubleToSingleFloat
from finn.transformation.move_reshape import RemoveCNVtoFCFlatten
from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
from finn.transformation.streamline.reorder import MakeMaxPoolNHWC
from finn.transformation.infer_data_layouts import InferDataLayouts
build_dir = "/tmp/" + os.environ["FINN_INST_NAME"]
test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1")
test_fpga_part = pynq_part_map[test_pynq_board]
target_clk_ns = 10
mem_mode = "decoupled"
def test_end2end_zynqbuild_cnv_w1a1_export():
import brevitas.onnx as bo
tfc = get_test_model_trained("CNV", 1, 1)
bo.export_finn_onnx(
tfc, (1, 3, 32, 32), build_dir + "/end2end_zynqbuild_cnv_w1a1_export.onnx"
)
def test_end2end_zynqbuild_cnv_w1a1_import_and_tidy():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_export.onnx"
)
model = model.transform(DoubleToSingleFloat())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(RemoveStaticGraphInputs())
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_tidy.onnx")
def test_end2end_zynqbuild_cnv_w1a1_streamline():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_tidy.onnx"
)
model = model.transform(Streamline())
model = model.transform(LowerConvsToMatMul())
model = model.transform(MakeMaxPoolNHWC())
model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
model = model.transform(ConvertBipolarMatMulToXnorPopcount())
model = model.transform(Streamline())
model = model.transform(RemoveUnusedTensors())
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_streamlined.onnx")
def test_end2end_zynqbuild_cnv_w1a1_convert_to_hls_layers():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_streamlined.onnx"
)
model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode))
model = model.transform(to_hls.InferQuantizedStreamingFCLayer(mem_mode))
model = model.transform(to_hls.InferConvInpGen())
model = model.transform(to_hls.InferStreamingMaxPool())
model = model.transform(RemoveCNVtoFCFlatten())
model = model.transform(InferDataLayouts())
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_hls_layers.onnx")
def test_end2end_zynqbuild_cnv_w1a1_create_dataflow_partition():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_hls_layers.onnx"
)
parent_model = model.transform(CreateDataflowPartition())
parent_model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_dataflow_parent.onnx")
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
dataflow_model_filename = sdp_node.get_nodeattr("model")
dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename)
dataflow_model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_dataflow_model.onnx")
def test_end2end_zynqbuild_cnv_w1a1_fold():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_dataflow_model.onnx"
)
fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
# each tuple is (PE, SIMD, in_fifo_depth) for a layer
folding = [
(16, 3, 256),
(32, 32, 256),
(16, 32, 256),
(16, 32, 256),
(4, 32, 214),
(1, 32, 2),
(1, 4, 126),
(1, 8, 62),
(5, 1, 6),
]
for fcl, (pe, simd, ififodepth) in zip(fc_layers, folding):
fcl_inst = getCustomOp(fcl)
fcl_inst.set_nodeattr("PE", pe)
fcl_inst.set_nodeattr("SIMD", simd)
fcl_inst.set_nodeattr("inFIFODepth", ififodepth)
swg_layers = model.get_nodes_by_op_type("ConvolutionInputGenerator")
swg_idepth = [2, 51, 9, 106, 2, 2]
for i in range(len(swg_layers)):
swg_inst = getCustomOp(swg_layers[i])
simd = folding[i][1]
swg_inst.set_nodeattr("SIMD", simd)
swg_inst.set_nodeattr("inFIFODepth", swg_idepth[i])
model = model.transform(AnnotateResources("estimate"))
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_folded.onnx")
def test_end2end_zynqbuild_cnv_w1a1_make_driver():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_folded.onnx"
)
model = model.transform(MakePYNQDriver(platform="zynq-iodma"))
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_pynq_driver.onnx")
@pytest.mark.slow
@pytest.mark.vivado
def test_end2end_zynqbuild_cnv_w1a1_build():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_pynq_driver.onnx"
)
model = model.transform(
ZynqBuild(test_pynq_board, target_clk_ns, enable_debug=True)
)
model = model.transform(AnnotateResources("synth"))
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_build.onnx")
def test_end2end_zynqbuild_cnv_w1a1_deploy_on_pynq():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_build.onnx"
)
try:
ip = os.environ["PYNQ_IP"] # no fault for this one; skip if not defined
if ip == "":
pytest.skip("PYNQ board IP address not specified")
username = os.getenv("PYNQ_USERNAME", "xilinx")
password = os.getenv("PYNQ_PASSWORD", "xilinx")
port = os.getenv("PYNQ_PORT", 22)
target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn")
model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir))
# save the model to be able to link it to the parent
model.save(build_dir + "/end2end_zynqbuild_cnv_w1a1_pynq_deploy.onnx")
except KeyError:
pytest.skip("PYNQ board IP address not specified")
def test_end2end_zynqbuild_cnv_w1a1_run_on_pynq():
# use the streamlined model as the "golden" model for right answers
golden = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_streamlined.onnx"
)
iname = golden.graph.input[0].name
oname = golden.graph.output[0].name
# load one of the test vectors
fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
input_tensor = input_tensor / 255
assert input_tensor.shape == (1, 3, 32, 32)
x = input_tensor
# x = np.zeros(ishape, dtype=np.float32)
# run using FINN-based execution
ret_golden = execute_onnx(golden, {iname: x}, True)
y_golden = ret_golden[oname]
# set up parent+child graph to test
# we'll use models from the previous step as the child model
parent_model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_dataflow_parent.onnx"
)
iname = parent_model.graph.input[0].name
oname = parent_model.graph.output[0].name
try:
ip = os.environ["PYNQ_IP"] # NOQA
if ip == "":
pytest.skip("PYNQ board IP address not specified")
# produce results with cppsim
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_cnv_w1a1_pynq_deploy.onnx"
)
sdp_node.set_nodeattr(
"model", build_dir + "/end2end_zynqbuild_cnv_w1a1_pynq_deploy.onnx"
)
ret = execute_onnx(parent_model, {iname: x}, True)
y = ret[oname]
assert np.isclose(y, y_golden).all()
assert np.argmax(y) == 3
except KeyError:
pytest.skip("PYNQ board IP address not specified")
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
from pkgutil import get_data
import pytest
import numpy as np
# as of Feb'20 there is a bug that segfaults ONNX shape inference if we
# import pytorch before onnx, so we make sure to import onnx first
import onnx # NOQA
import onnx.numpy_helper as nph
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
from finn.core.onnx_exec import execute_onnx
from finn.custom_op.registry import getCustomOp
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.fpgadataflow.create_dataflow_partition import (
CreateDataflowPartition,
)
from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ
from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver
from finn.transformation.general import (
RemoveUnusedTensors,
RemoveStaticGraphInputs,
GiveReadableTensorNames,
GiveUniqueNodeNames,
)
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
from finn.util.basic import pynq_part_map
from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip
from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources
from finn.transformation.fpgadataflow.make_zynq_proj import ZynqBuild
build_dir = "/tmp/" + os.environ["FINN_INST_NAME"]
test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1")
test_fpga_part = pynq_part_map[test_pynq_board]
target_clk_ns = 10
mem_mode = "decoupled"
def test_end2end_zynqbuild_tfc_w2a2_export():
import brevitas.onnx as bo
tfc = get_test_model_trained("TFC", 2, 2)
bo.export_finn_onnx(
tfc, (1, 1, 28, 28), build_dir + "/end2end_zynqbuild_tfc_w2a2_export.onnx"
)
def test_end2end_zynqbuild_tfc_w2a2_import_and_tidy():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_export.onnx"
)
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferDataTypes())
model = model.transform(RemoveStaticGraphInputs())
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_tidy.onnx")
def test_end2end_zynqbuild_tfc_w2a2_streamline():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_tidy.onnx"
)
model = model.transform(Streamline())
model = model.transform(RemoveUnusedTensors())
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_streamlined.onnx")
def test_end2end_zynqbuild_tfc_w2a2_convert_to_hls_layers():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_streamlined.onnx"
)
model = model.transform(to_hls.InferQuantizedStreamingFCLayer(mem_mode))
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_hls_layers.onnx")
def test_end2end_zynqbuild_tfc_w2a2_create_dataflow_partition():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_hls_layers.onnx"
)
parent_model = model.transform(CreateDataflowPartition())
parent_model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_dataflow_parent.onnx")
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
dataflow_model_filename = sdp_node.get_nodeattr("model")
dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename)
dataflow_model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_dataflow_model.onnx")
def test_end2end_zynqbuild_tfc_w2a2_fold():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_dataflow_model.onnx"
)
fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
# (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer
config = [
(16, 49, 16, 64, "block"),
(8, 8, 64, 64, "auto"),
(8, 8, 64, 64, "auto"),
(10, 8, 64, 10, "distributed"),
]
for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config):
fcl_inst = getCustomOp(fcl)
fcl_inst.set_nodeattr("PE", pe)
fcl_inst.set_nodeattr("SIMD", simd)
fcl_inst.set_nodeattr("inFIFODepth", ififo)
fcl_inst.set_nodeattr("outFIFODepth", ofifo)
fcl_inst.set_nodeattr("ram_style", ramstyle)
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_folded.onnx")
def test_end2end_zynqbuild_tfc_w2a2_make_driver():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_folded.onnx"
)
model = model.transform(MakePYNQDriver(platform="zynq-iodma"))
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_pynq_driver.onnx")
@pytest.mark.slow
@pytest.mark.vivado
def test_end2end_zynqbuild_tfc_w2a2_build():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_pynq_driver.onnx"
)
model = model.transform(
ZynqBuild(test_pynq_board, target_clk_ns, enable_debug=True)
)
model = model.transform(AnnotateResources("synth"))
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_build.onnx")
def test_end2end_zynqbuild_tfc_w2a2_deploy_on_pynq():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_build.onnx"
)
try:
ip = os.environ["PYNQ_IP"] # no fault for this one; skip if not defined
if ip == "":
pytest.skip("PYNQ board IP address not specified")
username = os.getenv("PYNQ_USERNAME", "xilinx")
password = os.getenv("PYNQ_PASSWORD", "xilinx")
port = os.getenv("PYNQ_PORT", 22)
target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn")
model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir))
# save the model to be able to link it to the parent
model.save(build_dir + "/end2end_zynqbuild_tfc_w2a2_pynq_deploy.onnx")
except KeyError:
pytest.skip("PYNQ board IP address not specified")
def test_end2end_zynqbuild_tfc_w2a2_run_on_pynq():
# use the streamlined model as the "golden" model for right answers
golden = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_streamlined.onnx"
)
iname = golden.graph.input[0].name
oname = golden.graph.output[0].name
raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
x = nph.to_array(input_tensor)
# x = np.zeros(ishape, dtype=np.float32)
# run using FINN-based execution
ret_golden = execute_onnx(golden, {iname: x}, True)
y_golden = ret_golden[oname]
# set up parent+child graph to test
# we'll use models from the previous step as the child model
parent_model = load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_dataflow_parent.onnx"
)
iname = parent_model.graph.input[0].name
oname = parent_model.graph.output[0].name
try:
ip = os.environ["PYNQ_IP"] # NOQA
if ip == "":
pytest.skip("PYNQ board IP address not specified")
# produce results with cppsim
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
load_test_checkpoint_or_skip(
build_dir + "/end2end_zynqbuild_tfc_w2a2_pynq_deploy.onnx"
)
sdp_node.set_nodeattr(
"model", build_dir + "/end2end_zynqbuild_tfc_w2a2_pynq_deploy.onnx"
)
ret = execute_onnx(parent_model, {iname: x}, True)
y = ret[oname]
assert np.isclose(y, y_golden).all()
except KeyError:
pytest.skip("PYNQ board IP address not specified")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment