Skip to content
Snippets Groups Projects
Commit 9ccaed38 authored by auphelia's avatar auphelia
Browse files

[Tests] Extend parameters for vvau testing

parent 746d44d4
No related branches found
No related tags found
No related merge requests found
...@@ -180,12 +180,12 @@ def prepare_inputs(input_tensor): ...@@ -180,12 +180,12 @@ def prepare_inputs(input_tensor):
@pytest.mark.parametrize("simd", [1, 9]) @pytest.mark.parametrize("simd", [1, 9])
# Input image shape # Input image shape
@pytest.mark.parametrize("dim_h", [10]) @pytest.mark.parametrize("dim_h", [10])
@pytest.mark.parametrize("dim_w", [10]) @pytest.mark.parametrize("dim_w", [10, 1])
# Kernel shape # Kernel shape
@pytest.mark.parametrize("k_h", [3]) @pytest.mark.parametrize("k_h", [3])
@pytest.mark.parametrize("k_w", [3]) @pytest.mark.parametrize("k_w", [3, 1])
# Number of input and output channels # Number of input and output channels
@pytest.mark.parametrize("channels", [6]) @pytest.mark.parametrize("channels", [3, 6])
# memory mode # memory mode
@pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) @pytest.mark.parametrize("mem_mode", ["const", "decoupled"])
# execution mode # execution mode
...@@ -196,15 +196,15 @@ def prepare_inputs(input_tensor): ...@@ -196,15 +196,15 @@ def prepare_inputs(input_tensor):
def test_fpgadataflow_vvau( def test_fpgadataflow_vvau(
idt, wdt, act, pe, simd, dim_h, dim_w, k_h, k_w, channels, mem_mode, exec_mode idt, wdt, act, pe, simd, dim_h, dim_w, k_h, k_w, channels, mem_mode, exec_mode
): ):
if pe == "channels":
pe = channels
if dim_w == 1 and k_w != 1: if dim_w == 1 and k_w != 1:
pytest.skip("1D image requires 1D kernel, skipping.") pytest.skip("1D image requires 1D kernel, skipping.")
if channels % pe != 0: if channels % pe != 0:
pytest.skip("Requirement Channels divisable by PE is violated.") pytest.skip("Requirement Channels divisable by PE is violated.")
if (k_h * k_w) % simd != 0:
pytest.skip("Requirement kernel (k_h * k_w) divisable by SIMD is violated.")
# Generate weights in expected shape for ONNX and HLS node # Generate weights in expected shape for ONNX and HLS node
W = gen_finn_dt_tensor(wdt, (channels, 1, k_h, k_w)) # shape: [channels, 1, k, k] W = gen_finn_dt_tensor(wdt, (channels, 1, k_h, k_w)) # shape: [channels, 1, k, k]
W_onnx = _infer_sparse_weight_tensor( W_onnx = _infer_sparse_weight_tensor(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment