Skip to content
Snippets Groups Projects
Commit 8660448d authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] add cppsim and rtlsim to eltwise test

parent c5214879
No related branches found
No related tags found
No related merge requests found
import pytest
import numpy as np
import onnx.parser as oprs
import qonnx.core.data_layout as dl
from qonnx.core.datatype import DataType
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.custom_op.registry import getCustomOp
from qonnx.transformation.general import GiveUniqueNodeNames
from qonnx.transformation.infer_shapes import InferShapes
from qonnx.util.basic import gen_finn_dt_tensor
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
from finn.analysis.fpgadataflow.exp_cycles_per_layer import exp_cycles_per_layer
from finn.core.onnx_exec import execute_onnx
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
def build_model(dt0, dt1):
def build_model(shp, dt0, dt1):
np.random.seed(0)
shp = [1, 3, 4, 2]
shp_str = str(shp)
input = f"""
<
......@@ -33,10 +45,52 @@ def build_model(dt0, dt1):
return model
def test_fpgadataflow_eltwise():
dt0 = DataType["UINT7"]
# input datatype for one operand
@pytest.mark.parametrize("dt0", [DataType["UINT4"], DataType["UINT7"]])
# channels
@pytest.mark.parametrize("ch", [1, 64])
# folding
@pytest.mark.parametrize("fold", [-1, 2, 1])
# execution mode
@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
@pytest.mark.fpgadataflow
@pytest.mark.vivado
def test_fpgadataflow_eltwise(dt0, ch, fold, exec_mode):
if fold == -1:
pe = 1
else:
pe = max(1, ch // fold)
assert ch % pe == 0
dt1 = DataType["UINT8"]
model = build_model(dt0, dt1)
shp = [1, 4, 2, ch]
model = build_model(shp, dt0, dt1)
in0 = gen_finn_dt_tensor(dt0, shp)
in1 = gen_finn_dt_tensor(dt1, shp)
idict = {"in0": in0, "in1": in1}
y_expected = execute_onnx(model, idict)["out0"]
model = model.transform(to_hls.InferStreamingEltwiseAbsDiff())
assert len(model.graph.node) == 1
assert model.graph.node[0].op_type == "StreamingEltwise"
getCustomOp(model.graph.node[0]).set_nodeattr("PE", pe)
if exec_mode == "cppsim":
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
model = model.transform(SetExecMode("cppsim"))
elif exec_mode == "rtlsim":
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(PrepareIP("xc7z020clg400-1", 5))
model = model.transform(HLSSynthIP())
model = model.transform(PrepareRTLSim())
else:
raise Exception("Unknown exec_mode")
y_produced = execute_onnx(model, idict)["out0"]
assert (y_produced == y_expected).all(), exec_mode + " failed"
if exec_mode == "rtlsim":
node = model.get_nodes_by_op_type("StreamingEltwise")[0]
inst = getCustomOp(node)
cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim")
exp_cycles_dict = model.analysis(exp_cycles_per_layer)
exp_cycles = exp_cycles_dict[node.name]
assert np.isclose(exp_cycles, cycles_rtlsim, atol=10)
assert exp_cycles != 0
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment