Skip to content
Snippets Groups Projects
Commit 850d8314 authored by auphelia's avatar auphelia
Browse files

[Test] Finished one test case with manual verification

parent 8d37db2d
No related branches found
No related tags found
No related merge requests found
# import numpy as np # import numpy as np
from onnx import TensorProto, helper from onnx import TensorProto, helper
# import finn.core.onnx_exec as oxe import finn.core.onnx_exec as oxe
from finn.core.datatype import DataType from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper from finn.core.modelwrapper import ModelWrapper
# from finn.core.utils import gen_finn_dt_tensor from finn.core.utils import gen_finn_dt_tensor
# from finn.transformation.fpgadataflow.cleanup import CleanUp # from finn.transformation.fpgadataflow.cleanup import CleanUp
from finn.transformation.fpgadataflow.codegen import CodeGen from finn.transformation.fpgadataflow.codegen import CodeGen
from finn.transformation.fpgadataflow.compile import Compile
# from finn.transformation.fpgadataflow.compile import Compile
def make_single_slidingwindow_modelwrapper( def make_single_slidingwindow_modelwrapper(
...@@ -58,6 +57,14 @@ def make_single_slidingwindow_modelwrapper( ...@@ -58,6 +57,14 @@ def make_single_slidingwindow_modelwrapper(
return model return model
def prepare_inputs(input_tensor, idt):
if idt == DataType.BIPOLAR:
# convert bipolar to binary
return {"inp": (input_tensor + 1) / 2}
else:
return {"inp": input_tensor}
def test_fpgadataflow_slidingwindow(): def test_fpgadataflow_slidingwindow():
idt = DataType.BIPOLAR idt = DataType.BIPOLAR
k = 2 k = 2
...@@ -67,9 +74,18 @@ def test_fpgadataflow_slidingwindow(): ...@@ -67,9 +74,18 @@ def test_fpgadataflow_slidingwindow():
ofm_dim = int(((ifm_dim - k) / stride) + 1) ofm_dim = int(((ifm_dim - k) / stride) + 1)
simd = 1 simd = 1
# x = gen_finn_dt_tensor(idt, (1, ifm_ch, ifm_dim, ifm_dim)) x = gen_finn_dt_tensor(idt, (1, ifm_ch, ifm_dim, ifm_dim))
model = make_single_slidingwindow_modelwrapper( model = make_single_slidingwindow_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
) )
model = model.transform(CodeGen()) model = model.transform(CodeGen())
model = model.transform(Compile())
# prepare input data
input_dict = prepare_inputs(x, idt)
# execute model
y_produced = oxe.execute_onnx(model, input_dict)["outp"]
print(x)
print(y_produced)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment