Skip to content
Snippets Groups Projects
Commit 7e86bdbf authored by Tobi-Alonso's avatar Tobi-Alonso
Browse files

Add test for export of QuantReLu

parent ba291c66
No related branches found
No related tags found
No related merge requests found
import onnx # noqa
import numpy as np
import torch
import brevitas.onnx as bo
from brevitas.nn import QuantReLU
from brevitas.core.quant import QuantType
from brevitas.core.restrict_val import RestrictValueType
from brevitas.core.scaling import ScalingImplType
import pytest
from finn.core.modelwrapper import ModelWrapper
import finn.core.onnx_exec as oxe
from finn.transformation.infer_shapes import InferShapes
export_onnx_path = "test_act.onnx"
@pytest.mark.parametrize("abits", [1, 2, 4, 8])
@pytest.mark.parametrize("max_val", [1.0, 1.5, 1 - 2 ** (-7)])
@pytest.mark.parametrize(
"scaling_impl_type", [ScalingImplType.CONST, ScalingImplType.PARAMETER]
)
def test_brevitas_relu_act_export(abits, max_val, scaling_impl_type):
min_val = -1.0
ishape = (1, 15)
b_act = QuantReLU(
bit_width=abits,
max_val=max_val,
scaling_impl_type=scaling_impl_type,
restrict_scaling_type=RestrictValueType.LOG_FP,
quant_type=QuantType.INT,
)
if scaling_impl_type == ScalingImplType.PARAMETER:
checkpoint = {
"act_quant_proxy.fused_activation_quant_proxy.tensor_quant.\
scaling_impl.learned_value": torch.tensor(
0.49
).type(
torch.FloatTensor
)
}
b_act.load_state_dict(checkpoint)
bo.export_finn_onnx(b_act, ishape, export_onnx_path)
model = ModelWrapper(export_onnx_path)
model = model.transform(InferShapes())
inp_tensor = np.random.uniform(low=min_val, high=max_val, size=ishape).astype(
np.float32
)
idict = {model.graph.input[0].name: inp_tensor}
odict = oxe.execute_onnx(model, idict, True)
produced = odict[model.graph.output[0].name]
inp_tensor = torch.from_numpy(inp_tensor).float()
b_act.eval()
expected = b_act.forward(inp_tensor).detach().numpy()
if not np.isclose(produced, expected, atol=1e-3).all():
print(abits, max_val, scaling_impl_type)
print("scale: ", b_act.quant_act_scale().type(torch.FloatTensor).detach())
if abits < 5:
print(
"thres:",
", ".join(["{:8.4f}".format(x) for x in b_act.export_thres[0]]),
)
print("input:", ", ".join(["{:8.4f}".format(x) for x in inp_tensor[0]]))
print("prod :", ", ".join(["{:8.4f}".format(x) for x in produced[0]]))
print("expec:", ", ".join(["{:8.4f}".format(x) for x in expected[0]]))
assert np.isclose(produced, expected, atol=1e-3).all()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment