Skip to content
Snippets Groups Projects
Commit 74bee9c2 authored by auphelia's avatar auphelia
Browse files

[Test] Add test for AbsorbScalarMulIntoTopK transformation

parent d54cb43c
No related branches found
No related tags found
No related merge requests found
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
import numpy as np
from onnx import TensorProto, helper
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames
from finn.transformation.insert_topk import InsertTopK
from finn.transformation.streamline.absorb import AbsorbScalarMulIntoTopK
import finn.core.onnx_exec as oxe
# parameter to indicate if mul parameter is negative or positive
@pytest.mark.parametrize("mul_positive", [True, False])
# parameter to indicate if mul parameter is scalar or not
@pytest.mark.parametrize("scalar", [True, False])
def test_absorb_mul_into_topk(mul_positive, scalar):
if scalar is True:
shape = [1]
else:
shape = [1, 1, 1, 1000]
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 1, 1, 1000])
a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, shape)
outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 1, 1, 1000])
mul_node = helper.make_node("Mul", ["inp", "a0"], ["outp"])
mul_graph = helper.make_graph(
nodes=[mul_node],
name="mul-graph",
inputs=[inp],
outputs=[outp],
value_info=[a0],
)
model = helper.make_model(mul_graph, producer_name="mul_model")
model = ModelWrapper(model)
# initialize values
if mul_positive is True:
a0_values = np.random.uniform(low=0.1, high=1, size=tuple(shape)).astype(
np.float32
)
else:
a0_values = np.random.uniform(low=-1, high=-0.1, size=tuple(shape)).astype(
np.float32
)
model.set_initializer("a0", a0_values)
model = model.transform(InsertTopK())
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model.save("test.onnx")
model_transformed = model.transform(AbsorbScalarMulIntoTopK())
model_transformed.save("test2.onnx")
# compare execution results
inp_values = np.random.uniform(low=-10, high=10, size=(1, 1, 1, 1000)).astype(
np.float32
)
idict = {"global_in": inp_values}
odict = oxe.execute_onnx(model, idict, True)
y_indices = odict["global_out"]
y_values = odict["TopK_0_out0"]
odict = oxe.execute_onnx(model_transformed, idict, True)
y_tr_indices = odict["global_out"]
y_tr_values = odict["TopK_0_out0"]
# the indices stay the same, if the model is transformed or not
assert (y_indices == y_tr_indices).all()
if scalar is True and mul_positive is True:
# the values change if the model was transformed
assert (y_values != y_tr_values).all()
# check for new order
assert model.graph != model_transformed.graph
assert len(model.graph.node) - 1 == len(model_transformed.graph.node)
assert model_transformed.graph.node[0].op_type == "TopK"
else:
assert (y_values == y_tr_values).all()
assert model.graph == model_transformed.graph
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment