Skip to content
Snippets Groups Projects
Commit 738113e8 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] do both activation and no-activation tests for StreamingFC

parent c85a51c7
No related branches found
No related tags found
No related merge requests found
......@@ -7,7 +7,8 @@ import finn.core.onnx_exec as oxe
import finn.custom_op.xnorpopcount as xp
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.core.utils import gen_finn_dt_tensor
from finn.core.utils import calculate_signed_dot_prod_range, gen_finn_dt_tensor
from finn.custom_op.multithreshold import multithreshold
from finn.transformation.fpgadataflow.cleanup import CleanUp
from finn.transformation.fpgadataflow.codegen import CodeGen
from finn.transformation.fpgadataflow.compile import Compile
......@@ -31,9 +32,14 @@ def make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T=None, tdt=Non
outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, nf, pe])
if T is not None:
node_inp_list = ["inp", "weights", "thresh"]
if odt == DataType.BIPOLAR:
actval = 0
else:
actval = odt.min()
else:
# no thresholds
node_inp_list = ["inp", "weights"]
actval = 0
FCLayer_node = helper.make_node(
"StreamingFCLayer_Batch",
node_inp_list,
......@@ -50,6 +56,7 @@ def make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T=None, tdt=Non
inputDataType=idt.name,
weightDataType=wdt.name,
outputDataType=odt.name,
ActVal=actval,
)
graph = helper.make_graph(
nodes=[FCLayer_node], name="fclayer_graph", inputs=[inp], outputs=[outp]
......@@ -77,6 +84,8 @@ def prepare_inputs(model, input_tensor, idt):
return {"inp": input_tensor}
# activation: None or DataType
@pytest.mark.parametrize("act", [None, DataType.BIPOLAR])
# weight datatype
@pytest.mark.parametrize("wdt", [DataType.BIPOLAR, DataType.INT2])
# input datatype
......@@ -89,7 +98,7 @@ def prepare_inputs(model, input_tensor, idt):
@pytest.mark.parametrize("mw", [4])
# HLS matrix height (output features)
@pytest.mark.parametrize("mh", [4])
def test_fpgadataflow_fclayer_noact(idt, wdt, nf, sf, mw, mh):
def test_fpgadataflow_fclayer(idt, wdt, act, nf, sf, mw, mh):
if nf == -1:
nf = mh
if sf == -1:
......@@ -98,15 +107,32 @@ def test_fpgadataflow_fclayer_noact(idt, wdt, nf, sf, mw, mh):
simd = mw // sf
assert mh % pe == 0
assert mw % sf == 0
if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
odt = DataType.UINT32
else:
odt = DataType.INT32
# generate weights
W = gen_finn_dt_tensor(wdt, (mw, mh))
# generate input data
x = gen_finn_dt_tensor(idt, (1, mw))
model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt)
if act is None:
# no activation, produce accumulators
T = None
tdt = None
if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
odt = DataType.UINT32
else:
odt = DataType.INT32
else:
odt = act
(min, max) = calculate_signed_dot_prod_range(idt, wdt, mw)
n_steps = act.get_num_possible_values() - 1
T = np.random.randint(min, max - 1, (mh, n_steps)).astype(np.float32)
# generate thresholds for activation
if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR:
tdt = DataType.UINT32
# bias thresholds to be positive
T = np.ceil((T + mw) / 2)
assert (T >= 0).all()
else:
tdt = DataType.INT32
model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T, tdt)
model = model.transform(CodeGen())
model = model.transform(Compile())
# prepare input data
......@@ -116,6 +142,14 @@ def test_fpgadataflow_fclayer_noact(idt, wdt, nf, sf, mw, mh):
y = xp.xnorpopcountmatmul((x + 1) / 2, (W + 1) / 2)
else:
y = np.matmul(x, W)
if T is not None:
y = multithreshold(y, T)
if act == DataType.BIPOLAR:
# binary to bipolar
y = 2 * y - 1
else:
# signed offset
y -= act.min()
oshape = model.get_tensor_shape("outp")
y_expected = y.reshape(oshape)
# execute model
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment