Skip to content
Snippets Groups Projects
Commit 5a5fbb79 authored by Tobi-Alonso's avatar Tobi-Alonso
Browse files

[Test] Modify test_absorb_mul_into_topk now that insertTopk also absorbs scalar Mul

parent b992df12
No related branches found
No related tags found
No related merge requests found
......@@ -34,7 +34,6 @@ from finn.core.modelwrapper import ModelWrapper
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames
from finn.transformation.insert_topk import InsertTopK
from finn.transformation.streamline.absorb import AbsorbScalarMulIntoTopK
import finn.core.onnx_exec as oxe
......@@ -43,25 +42,35 @@ import finn.core.onnx_exec as oxe
# parameter to indicate if mul parameter is scalar or not
@pytest.mark.parametrize("scalar", [True, False])
def test_absorb_mul_into_topk(mul_positive, scalar):
K = 5
if scalar is True:
shape = [1]
else:
shape = [1, 1, 1, 1000]
out_shape = [1, 1, 1, K]
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 1, 1, 1000])
a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, shape)
outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 1, 1, 1000])
mul_node = helper.make_node("Mul", ["inp", "a0"], ["outp"])
outp = helper.make_tensor_value_info("outp", TensorProto.INT64, out_shape)
k_value = helper.make_tensor_value_info("k_value", TensorProto.INT64, [1])
topk_values = helper.make_tensor_value_info(
"topk_values", TensorProto.FLOAT, out_shape
)
mul_node = helper.make_node("Mul", ["inp", "a0"], ["a1"])
top_k = helper.make_node(
"TopK", ["a1", "k_value"], ["topk_values", "outp"], largest=1, axis=-1, sorted=1
)
mul_graph = helper.make_graph(
nodes=[mul_node],
nodes=[mul_node, top_k],
name="mul-graph",
inputs=[inp],
outputs=[outp],
value_info=[a0],
value_info=[a0, k_value, topk_values],
)
model = helper.make_model(mul_graph, producer_name="mul_model")
model = ModelWrapper(model)
# initialize values
if mul_positive is True:
a0_values = np.random.uniform(low=0.1, high=1, size=tuple(shape)).astype(
......@@ -72,7 +81,9 @@ def test_absorb_mul_into_topk(mul_positive, scalar):
np.float32
)
model.set_initializer("a0", a0_values)
model = model.transform(InsertTopK())
k_tensor = np.array([K]).astype(np.int64)
model.set_initializer(k_value.name, k_tensor)
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
model = model.transform(GiveUniqueNodeNames())
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment