Skip to content
Snippets Groups Projects
Commit 501ca303 authored by auphelia's avatar auphelia
Browse files

[Test] Add depthwise convolution cppsim/rtlsim test

parent 54365d28
No related branches found
No related tags found
No related merge requests found
......@@ -78,7 +78,7 @@ def make_single_im2col_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, simd, stride, i
def make_single_slidingwindow_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt, dw=0
):
odt = idt
inp = helper.make_tensor_value_info(
......@@ -102,6 +102,7 @@ def make_single_slidingwindow_modelwrapper(
Stride=stride,
inputDataType=idt.name,
outputDataType=odt.name,
depthwise=dw
)
graph = helper.make_graph(
nodes=[SlidingWindow_node],
......@@ -128,9 +129,9 @@ def prepare_inputs(input_tensor):
# kernel size
@pytest.mark.parametrize("k", [2, 4])
# input dimension
@pytest.mark.parametrize("ifm_dim", [4, 6, 8])
@pytest.mark.parametrize("ifm_dim", [6, 8])
# input channels
@pytest.mark.parametrize("ifm_ch", [2, 4]) # , 2, 3, 4])
@pytest.mark.parametrize("ifm_ch", [2, 4])
# Stride
@pytest.mark.parametrize("stride", [1, 2])
# execution mode
......@@ -168,6 +169,50 @@ def test_fpgadataflow_slidingwindow(idt, k, ifm_dim, ifm_ch, stride, exec_mode,
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
)
y_expected = oxe.execute_onnx(golden, input_dict)["outp"]
# if idt == DataType.BIPOLAR:
# y_expected = 2 * y_expected - 1
assert (y_produced == y_expected).all()
# input datatype
@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2])
# kernel size
@pytest.mark.parametrize("k", [2, 4])
# input dimension
@pytest.mark.parametrize("ifm_dim", [4, 6, 8])
# input channels
@pytest.mark.parametrize("ifm_ch", [2, 4])
# Stride
@pytest.mark.parametrize("stride", [1, 2])
# execution mode
@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
# input channel parallelism ("SIMD")
@pytest.mark.parametrize("simd", [1, 2])
@pytest.mark.slow
@pytest.mark.vivado
def test_fpgadataflow_slidingwindow_dw(idt, k, ifm_dim, ifm_ch, stride, exec_mode, simd):
# set node attribute depthwise
dw = 1
ofm_dim = int(((ifm_dim - k) / stride) + 1)
x = gen_finn_dt_tensor(idt, (1, ifm_dim, ifm_dim, ifm_ch))
model = make_single_slidingwindow_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt, dw
)
if exec_mode == "cppsim":
model = model.transform(SetExecMode("cppsim"))
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
elif exec_mode == "rtlsim":
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(PrepareIP("xc7z020clg400-1", 5))
model = model.transform(HLSSynthIP())
model = model.transform(PrepareRTLSim())
else:
raise Exception("Unknown exec_mode in test_fpgadataflow_slidingwindow")
# prepare input data
input_dict = prepare_inputs(x)
# execute model
y_produced = oxe.execute_onnx(model, input_dict)["outp"]
y_shape = (1, ofm_dim, ofm_dim, k*k*ifm_ch)
assert y_produced.shape == y_shape
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment