Skip to content
Snippets Groups Projects
Commit 4e84e8c9 authored by auphelia's avatar auphelia
Browse files

[CustomOp] First draft of QuantAvgPool2d custom op

parent a0dea606
No related branches found
No related tags found
No related merge requests found
import numpy as np
from onnx import TensorProto, helper
from finn.custom_op import CustomOp
from finn.custom_op.im2col import compute_conv_output_dim
class QuantAvgPool2d(CustomOp):
"""Class that corresponds to the quantized average pooling
layer from brevitas"""
def get_nodeattr_types(self):
return {
"stride": ("i", True, 1),
"kernel": ("i", True, 1),
"ibits": ("s", True, ""),
"obits": ("i", False, 0),
"signed": ("i", False, 0),
}
def make_shape_compatible_op(self, model):
node = self.onnx_node
inp = node.input[0]
ishape = model.get_tensor_shape(inp)
# we assume that the shape is (NCHW) and H=W
assert len(ishape) == 4, "Unexpected input shape for QuantAvgPool2d"
assert (
ishape[2] == ishape[3]
), "QuantAvgPool2d for non-square images unsupported"
ch = ishape[1]
idim = ishape[2]
k = self.get_nodeattr("kernel")
stride = self.get_nodeattr("stride")
odim = compute_conv_output_dim(idim, k, stride)
# implement tensor with correct shape
values = np.random.randn(1, ch, odim, odim).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
def infer_node_datatype(self, model):
node = self.onnx_node
# data type stays the same
dtype = model.get_tensor_datatype(node.input[0])
model.set_tensor_datatype(node.output[0], dtype)
def execute_node(self, context, graph):
pass
def verify_node(self):
pass
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment