Skip to content
Snippets Groups Projects
Commit 2bbf6272 authored by Tobi-Alonso's avatar Tobi-Alonso
Browse files

[Test] Add test for ChannelwiseOp_Batch op (required to change hlslib commit)

parent e464fb8f
No related branches found
No related tags found
No related merge requests found
...@@ -15,7 +15,7 @@ gecho () { ...@@ -15,7 +15,7 @@ gecho () {
# the repos themselves are cloned in the Dockerfile # the repos themselves are cloned in the Dockerfile
BREVITAS_COMMIT=989cdfdba4700fdd900ba0b25a820591d561c21a BREVITAS_COMMIT=989cdfdba4700fdd900ba0b25a820591d561c21a
CNPY_COMMIT=4e8810b1a8637695171ed346ce68f6984e585ef4 CNPY_COMMIT=4e8810b1a8637695171ed346ce68f6984e585ef4
HLSLIB_COMMIT=13e9b0772a27a3a1efc40c878d8e78ed09efb716 HLSLIB_COMMIT=afcfe75f3404249bddeeb3f15df65bd1fcb1072e
PYVERILATOR_COMMIT=1d89cb0d4e0c97469cc6352c611f876ec13edfa6 PYVERILATOR_COMMIT=1d89cb0d4e0c97469cc6352c611f876ec13edfa6
PYNQSHELL_COMMIT=0c82a61b0ec1a07fa275a14146233824ded7a13d PYNQSHELL_COMMIT=0c82a61b0ec1a07fa275a14146233824ded7a13d
......
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
import numpy as np
from onnx import TensorProto, helper
import finn.core.onnx_exec as oxe
from finn.analysis.fpgadataflow.hls_synth_res_estimation import hls_synth_res_estimation
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
from finn.transformation.general import GiveUniqueNodeNames
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
from finn.util.basic import gen_finn_dt_tensor
from finn.transformation.fpgadataflow.replace_verilog_relpaths import (
ReplaceVerilogRelPaths,
)
def make_modelwrapper(C, pe, idt, odt, func, vecs):
NumChannels = C.shape[0]
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, vecs + [NumChannels])
outp = helper.make_tensor_value_info(
"outp", TensorProto.FLOAT, vecs + [NumChannels]
)
node_inp_list = ["inp", "const"]
node = helper.make_node(
"ChannelwiseOp_Batch",
node_inp_list,
["outp"],
domain="finn",
backend="fpgadataflow",
NumChannels=NumChannels,
Func=func,
PE=pe,
inputDataType=idt.name,
outputDataType=odt.name,
numInputVectors=vecs,
)
graph = helper.make_graph(nodes=[node], name="graph", inputs=[inp], outputs=[outp],)
model = helper.make_model(graph, producer_name="model")
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", odt)
model.set_tensor_datatype("const", idt)
model.set_initializer("const", C)
return model
# activation: None or DataType
@pytest.mark.parametrize("act", [DataType.INT8])
# input datatype
@pytest.mark.parametrize("idt", [DataType.INT4])
# folding, -1 is maximum possible
@pytest.mark.parametrize("nf", [-1, 2, 1])
# number of input features
@pytest.mark.parametrize("ich", [16])
# vecs
@pytest.mark.parametrize("vecs", [[1], [1, 7, 7]])
# function
@pytest.mark.parametrize("func", ["add", "mul"])
# execution mode
@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
@pytest.mark.vivado
@pytest.mark.slow
def test_fpgadataflow_addmul(idt, act, nf, ich, func, vecs, exec_mode):
if nf == -1:
nf = ich
pe = ich // nf
assert ich % pe == 0
# generate input data
x = gen_finn_dt_tensor(idt, tuple(vecs + [ich]))
odt = act
C = np.random.randint(idt.min(), idt.max() + 1, ich).astype(np.float32)
model = make_modelwrapper(C, pe, idt, odt, func, vecs)
if exec_mode == "cppsim":
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
model = model.transform(SetExecMode("cppsim"))
elif exec_mode == "rtlsim":
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(PrepareIP("xc7z020clg400-1", 5))
model = model.transform(HLSSynthIP())
model = model.transform(ReplaceVerilogRelPaths())
model = model.transform(PrepareRTLSim())
else:
raise Exception("Unknown exec_mode")
# package input data as dictionary
input_dict = {"inp": x}
oshape = model.get_tensor_shape("outp")
C_reshaped = np.broadcast_to(C.flatten(), x.shape)
if func == "add":
y = x + C_reshaped
elif func == "mul":
y = x * C_reshaped
y_expected = y.reshape(oshape)
# execute model
y_produced = oxe.execute_onnx(model, input_dict)["outp"]
y_produced = y_produced.reshape(y_expected.shape)
assert (y_produced == y_expected).all(), "cppsim failed"
if exec_mode == "rtlsim":
hls_synt_res_est = model.analysis(hls_synth_res_estimation)
assert "ChannelwiseOp_Batch_0" in hls_synt_res_est
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment