Skip to content
Snippets Groups Projects
Commit 286f9b1a authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Test] add test_convert_to_hls_layers_lfc_w1a1

parent ff39d9da
No related branches found
No related tags found
No related merge requests found
import os
import brevitas.onnx as bo
import torch
from models.LFC import LFC
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
import finn.transformation.streamline.absorb as absorb
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import Streamline
export_onnx_path = "test_output_lfc.onnx"
# TODO get from config instead, hardcoded to Docker path for now
trained_lfc_checkpoint = (
"/workspace/brevitas_cnv_lfc/pretrained_models/LFC_1W1A/checkpoints/best.tar"
)
def test_convert_to_hls_layers_lfc_w1a1():
lfc = LFC(weight_bit_width=1, act_bit_width=1, in_bit_width=1)
checkpoint = torch.load(trained_lfc_checkpoint, map_location="cpu")
lfc.load_state_dict(checkpoint["state_dict"])
bo.export_finn_onnx(lfc, (1, 1, 28, 28), export_onnx_path)
model = ModelWrapper(export_onnx_path)
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(Streamline())
model = model.transform(ConvertBipolarMatMulToXnorPopcount())
model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
model = model.transform(to_hls.InferBinaryStreamingFCLayer())
fc0 = model.graph.node[2]
assert fc0.op_type == "StreamingFCLayer_Batch"
assert model.get_tensor_shape(fc0.input[0]) == [1, 784, 1]
assert model.get_tensor_shape(fc0.input[1]) == [1, 784 * 1024, 1]
assert model.get_tensor_shape(fc0.input[2]) == [1, 1024, 1]
fc1 = model.graph.node[3]
assert fc1.op_type == "StreamingFCLayer_Batch"
assert model.get_tensor_shape(fc1.input[0]) == [1, 1024, 1]
assert model.get_tensor_shape(fc1.input[1]) == [1, 1024 * 1024, 1]
assert model.get_tensor_shape(fc1.input[2]) == [1, 1024, 1]
fc2 = model.graph.node[4]
assert fc2.op_type == "StreamingFCLayer_Batch"
assert model.get_tensor_shape(fc2.input[0]) == [1, 1024, 1]
assert model.get_tensor_shape(fc2.input[1]) == [1, 1024 * 1024, 1]
assert model.get_tensor_shape(fc2.input[2]) == [1, 1024, 1]
os.remove(export_onnx_path)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment