Skip to content
Snippets Groups Projects
Commit 215729ee authored by Lucian Petrica's avatar Lucian Petrica
Browse files

Updated driver generation transform and template

parent b04acc4f
No related branches found
No related tags found
No related merge requests found
......@@ -28,6 +28,7 @@
import os
import shutil
import warnings
from finn.custom_op.registry import getCustomOp
from finn.transformation import Transformation
......@@ -53,7 +54,7 @@ class MakePYNQDriver(Transformation):
def apply(self, model):
vivado_pynq_proj = model.get_metadata_prop("vivado_pynq_proj")
if vivado_pynq_proj is None or (not os.path.isdir(vivado_pynq_proj)):
raise Exception("No PYNQ project found, apply MakePYNQProject first.")
warnings.warn("No PYNQ project found, apply MakePYNQProject first.")
# create a temporary folder for the generated driver
pynq_driver_dir = make_build_dir(prefix="pynq_driver_")
......@@ -109,6 +110,11 @@ class MakePYNQDriver(Transformation):
# clock settings for driver
clk_ns = float(model.get_metadata_prop("clk_ns"))
# default to 10ns / 100 MHz if property not set
if clk_ns is None:
clk_ns = 10.0
else:
clk_ns = float(clk_ns)
fclk_mhz = 1 / (clk_ns * 0.001)
# TODO change according to PYNQ board?
driver = driver.replace("$CLK_NAME$", "fclk0_mhz")
......
......@@ -104,7 +104,7 @@ from finn.core.datatype import DataType
from pynq.ps import Clocks
class FINNAccelDriver():
def __init__(self, N, bitfile):
def __init__(self, N, bitfile, platform="zynq"):
\"\"\"Instantiate the FINN accelerator driver.
Gets batchsize (N) as integer and path to bitfile as string.\"\"\"
self.N = N
......@@ -119,21 +119,29 @@ class FINNAccelDriver():
self.oshape_folded = $OUTPUT_SHAPE_FOLDED$
self.ishape_packed = $INPUT_SHAPE_PACKED$ # datatype np.uint8
self.oshape_packed = $OUTPUT_SHAPE_PACKED$ # datatype np.uint8
# clock frequency
self.fclk_mhz = $CLOCK_FREQ_MHZ$
# load bitfile and set up accelerator
self.ol = Overlay(bitfile)
# set the clock frequency as specified by user during transformations
Clocks.$CLK_NAME$ = self.fclk_mhz
self.dma = self.ol.axi_dma_0
self.ctrl_regs = self.ol.resize_accel_0
# neuron folding factor of output = iterations per sample
self.itersPerSample = self.oshape_packed[-2]
# AXI lite register offset for number of iterations
# used by TLastMarker to signal end of transmission for AXI CDMA
self.REG_OFFSET_NUM_ITERS = 0x10
# set up TLastMarker with correct num. samples
self.ctrl_regs.write(self.REG_OFFSET_NUM_ITERS, self.N*self.itersPerSample)
if self.platform == "zynq":
# clock frequency
self.fclk_mhz = $CLOCK_FREQ_MHZ$
# set the clock frequency as specified by user during transformations
if fclk_mhz > 0:
Clocks.$CLK_NAME$ = self.fclk_mhz
self.dma = self.ol.axi_dma_0
self.ctrl_regs = self.ol.resize_accel_0
# AXI lite register offset for number of iterations
# used by TLastMarker to signal end of transmission for AXI CDMA
self.REG_OFFSET_NUM_ITERS = 0x10
# set up TLastMarker with correct num. samples
self.ctrl_regs.write(self.REG_OFFSET_NUM_ITERS, self.N*self.itersPerSample)
elif self.platform == "alveo":
self.idma = self.ol.idma0
self.odma = self.ol.odma0
else:
raise ValueError("Supported platforms are zynq and alveo")
# allocate a PYNQ buffer for the packed input and buffer
self.ibuf_packed_device = allocate(shape=self.ishape_packed, dtype=np.uint8)
......@@ -176,19 +184,29 @@ class FINNAccelDriver():
np.copyto(self.ibuf_packed_device, data)
def execute(self):
\"\"\"Executes accelerator by setting up the DMA and
waiting until all transfers complete. Uses only member variables and
\"\"\"Executes accelerator by setting up the DMA(s) and
waiting until all transfers/calls complete. Uses only member variables and
returns nothing.\"\"\"
dma = self.dma
dma.sendchannel.transfer(self.ibuf_packed_device)
dma.recvchannel.transfer(self.obuf_packed_device)
dma.sendchannel.wait()
dma.recvchannel.wait()
if self.platform == "zynq":
dma = self.dma
dma.sendchannel.transfer(self.ibuf_packed_device)
dma.recvchannel.transfer(self.obuf_packed_device)
dma.sendchannel.wait()
dma.recvchannel.wait()
else:
self.ibuf_packed_device.sync_to_device()
self.idma.start(self.ibuf_packed_device, self.N)
self.odma.start(self.obuf_packed_device, self.N)
self.idma.wait()
self.odma.wait()
self.obuf_packed_device.sync_from_device()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Set exec mode, batchsize N, bitfile name, inputfile name and outputfile name')
parser.add_argument('--exec_mode', help='Please select functional verification ("execute") or throughput test ("throughput_test")', default="execute")
parser.add_argument('--platform', help='Target platform, zynq or alveo', default="zynq")
parser.add_argument('--batchsize', help='number of samples for inference', type=int, default=1)
parser.add_argument('--bitfile', help='name of bitfile (i.e. "resizer.bit")', default="resizer.bit")
parser.add_argument('--inputfile', help='name of input npy file (i.e. "input.npy")', default="input.npy")
......@@ -196,13 +214,14 @@ if __name__ == "__main__":
# parse arguments
args = parser.parse_args()
exec_mode = args.exec_mode
platform = args.platform
N = args.batchsize
bitfile = args.bitfile
inputfile = args.inputfile
outputfile = args.outputfile
# instantiate FINN accelerator driver and pass batchsize and bitfile
finnDriver = FINNAccelDriver(N, bitfile)
finnDriver = FINNAccelDriver(N, bitfile, platform)
# for the remote execution the data from the input npy file has to be loaded,
# packed and copied to the PYNQ buffer
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment