Skip to content
Snippets Groups Projects
Commit 1414756d authored by auphelia's avatar auphelia
Browse files

[Test] Add ipgen and ipstitch for cnv end2end flow

parent 8abc21e5
No related branches found
No related tags found
No related merge requests found
......@@ -28,18 +28,12 @@
import os
# import pkg_resources as pk
# import pytest
import numpy as np
# as of Feb'20 there is a bug that segfaults ONNX shape inference if we
# import pytorch before onnx, so we make sure to import onnx first
import onnx # NOQA
# import onnx.numpy_helper as nph
from finn.core.modelwrapper import ModelWrapper
from finn.custom_op.registry import getCustomOp
from finn.core.onnx_exec import execute_onnx
......@@ -133,26 +127,52 @@ def test_end2end_cnv_w1a1_create_dataflow_partition():
def test_end2end_cnv_w1a1_fold_and_tlastmarker():
model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_model.onnx")
for node in model.graph.node:
if node.op_type == "StreamingFCLayer_Batch":
inst = getCustomOp(node)
inst.set_nodeattr("mem_mode", "const")
mw = inst.get_nodeattr("MW")
mh = inst.get_nodeattr("MH")
if mh % 8 == 0:
pe = mh // 8
elif mh % 4 == 0:
pe = mh // 4
else:
pe = mh
inst.set_nodeattr("PE", pe)
if mw % 32 == 0:
simd = mw // 32
elif mw % 16 == 0:
simd = mw // 16
else:
simd = mw
inst.set_nodeattr("SIMD", simd)
fc0 = model.graph.node[1]
fc1 = model.graph.node[3]
fc2 = model.graph.node[6]
fc3 = model.graph.node[8]
fc4 = model.graph.node[11]
fc5 = model.graph.node[13]
fc6 = model.graph.node[14]
fc7 = model.graph.node[15]
fc8 = model.graph.node[16]
fc0w = getCustomOp(fc0)
fc1w = getCustomOp(fc1)
fc2w = getCustomOp(fc2)
fc3w = getCustomOp(fc3)
fc4w = getCustomOp(fc4)
fc5w = getCustomOp(fc5)
fc6w = getCustomOp(fc6)
fc7w = getCustomOp(fc7)
fc8w = getCustomOp(fc8)
fc0w.set_nodeattr("SIMD", 27)
fc0w.set_nodeattr("PE", 8)
fc1w.set_nodeattr("SIMD", 32)
fc1w.set_nodeattr("PE", 8)
fc2w.set_nodeattr("SIMD", 32)
fc2w.set_nodeattr("PE", 16)
fc3w.set_nodeattr("SIMD", 32)
fc3w.set_nodeattr("PE", 16)
fc4w.set_nodeattr("SIMD", 32)
fc4w.set_nodeattr("PE", 32)
fc5w.set_nodeattr("SIMD", 32)
fc5w.set_nodeattr("PE", 32)
fc6w.set_nodeattr("SIMD", 8)
fc6w.set_nodeattr("PE", 64)
fc7w.set_nodeattr("SIMD", 16)
fc7w.set_nodeattr("PE", 64)
fc8w.set_nodeattr("SIMD", 16)
fc8w.set_nodeattr("PE", 10)
model = model.transform(InsertDWC())
model = model.transform(InsertTLastMarker())
model.save(build_dir + "/end2end_cnv_w1a1_folded.onnx")
......@@ -175,7 +195,6 @@ def test_end2end_cnv_w1a1_ip_stitch():
def test_end2end_cnv_w1a1_verify_dataflow_part():
model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipstitch.onnx")
# model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipgen_npysim.onnx")
x = np.zeros((1, 32, 32, 3), dtype=np.float32)
inp_name = model.graph.input[0].name
out_name = model.graph.output[0].name
......@@ -197,10 +216,10 @@ def test_end2end_cnv_w1a1_verify_dataflow_part():
ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True)
res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name]
# whole-network (ip-stitched) rtlsim
# model.set_metadata_prop("exec_mode", "rtlsim")
# model.set_metadata_prop("rtlsim_trace", "whole_trace.vcd")
# model.save(build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx")
# ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
# res_rtlsim_whole = ret_rtlsim_whole[out_name]
model.set_metadata_prop("exec_mode", "rtlsim")
model.set_metadata_prop("rtlsim_trace", "whole_trace.vcd")
model.save(build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx")
ret_rtlsim_whole = execute_onnx(model, inp_dict, True)
res_rtlsim_whole = ret_rtlsim_whole[out_name]
assert np.isclose(res_npysim, res_rtlsim_nodebynode).all()
# assert np.isclose(res_npysim, res_rtlsim_whole).all()
assert np.isclose(res_npysim, res_rtlsim_whole).all()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment