Skip to content
Snippets Groups Projects
Commit 04281211 authored by Lucian Petrică's avatar Lucian Petrică
Browse files

Added test with 3 values of k

parent 4d820d0d
No related branches found
No related tags found
No related merge requests found
import onnx
from finn.util.test import get_test_model_trained
import brevitas.onnx as bo
import numpy as np
import onnx.numpy_helper as nph
import torch
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.insert_topk import InsertTopK
import finn.core.onnx_exec as oxe
from pkgutil import get_data
import pytest
export_onnx_path = "test_output_lfc.onnx"
@pytest.mark.parametrize("k", [1,5,10])
def test_topk_insert(k):
tfc = get_test_model_trained("TFC", 1, 1)
bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path)
model = ModelWrapper(export_onnx_path)
#do transformations (no topk)
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferDataTypes())
#verification: generate random input, run through net, streamline, run again, check that output is top-k
raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
input_tensor = onnx.load_tensor_from_string(raw_i)
input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float()
output_golden = tfc.forward(input_brevitas).detach().numpy()
output_golden_topk = np.flip(output_golden.flatten().argsort())[:k]
input_dict = {"global_in": nph.to_array(input_tensor)}
output_dict = oxe.execute_onnx(model, input_dict)
output_pysim = output_dict[list(output_dict.keys())[0]]
#insert top-k
model = model.transform(InsertTopK(k))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferShapes())
#verify output of top-k
output_dict_topk = oxe.execute_onnx(model, input_dict)
output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]]
assert np.array_equal(output_golden_topk.flatten(), output_pysim_topk.astype(np.int).flatten())
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment