Skip to content
Snippets Groups Projects
Commit 0233e5f1 authored by Yaman Umuroglu's avatar Yaman Umuroglu
Browse files

[Transform] fix edge case in RemoveIdentityOps + add test

parent e9cab671
No related branches found
No related tags found
No related merge requests found
......@@ -32,6 +32,23 @@ from finn.transformation.infer_shapes import InferShapes
import numpy as np
def _remove_node_and_rewire(model, node):
producer = model.find_producer(node.input[0])
if producer is not None:
# wire output tensor to
# output of producer node
producer.output[0] = node.output[0]
else:
# node is first in graph
consumer = model.find_consumer(node.output[0])
assert consumer is not None, "Whole graph is identity"
assert consumer.input[0] == node.output[0]
# rewire consumer's input directly to graph input
consumer.input[0] = node.input[0]
# remove node
model.graph.node.remove(node)
class RemoveIdentityOps(Transformation):
"""Remove identity ops like Add/Sub with zero or Mul/Div with one"""
......@@ -48,11 +65,7 @@ class RemoveIdentityOps(Transformation):
):
A = model.get_initializer(n.input[1])
if A is not None and (A == np.zeros_like(A)).all():
producer = model.find_producer(n.input[0])
# remove node and wire output tensor to
# output of producer node
producer.output[0] = n.output[0]
graph.node.remove(n)
_remove_node_and_rewire(model, n)
elif (
n.op_type in ["Mul", "Div"]
......@@ -61,10 +74,6 @@ class RemoveIdentityOps(Transformation):
):
A = model.get_initializer(n.input[1])
if A is not None and (A == np.ones_like(A)).all():
producer = model.find_producer(n.input[0])
# remove node and wire output tensor to
# output of producer node
producer.output[0] = n.output[0]
graph.node.remove(n)
_remove_node_and_rewire(model, n)
model = model.transform(InferShapes())
return (model, graph_modified)
......@@ -11,7 +11,7 @@ from finn.transformation.streamline.remove import RemoveIdentityOps
from finn.util.basic import gen_finn_dt_tensor
def insert_identity_op(model, op):
def insert_identity_op(model, op, as_first_node):
if op in ["Add", "Sub"]:
val = np.asarray([0.0], dtype=np.float32)
elif op in ["Mul", "Div"]:
......@@ -19,10 +19,15 @@ def insert_identity_op(model, op):
else:
return
identity_node = helper.make_node(op, ["div_out", "value"], ["ident_out"])
graph = model.graph
graph.node.insert(3, identity_node)
graph.node[-1].input[0] = "ident_out"
if as_first_node:
identity_node = helper.make_node(op, ["inp", "value"], ["ident_out"])
graph.node.insert(0, identity_node)
graph.node[1].input[0] = "ident_out"
else:
identity_node = helper.make_node(op, ["div_out", "value"], ["ident_out"])
graph.node.insert(3, identity_node)
graph.node[-1].input[0] = "ident_out"
model.set_initializer("value", val)
return model
......@@ -30,7 +35,8 @@ def insert_identity_op(model, op):
# identity operations to be inserted
@pytest.mark.parametrize("op", ["Add", "Sub", "Mul", "Div"])
def test_remove_identity_ops(op):
@pytest.mark.parametrize("as_first_node", [False, True])
def test_remove_identity_ops(op, as_first_node):
# set up onnx model
inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 4, 1, 1])
......@@ -64,7 +70,7 @@ def test_remove_identity_ops(op):
model.set_initializer("shape", shape_values)
model.set_initializer("div", div_values)
model.set_initializer("matmul", matmul_values)
insert_identity_op(model, op)
insert_identity_op(model, op, as_first_node)
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
idict = {"inp": inp_values}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment