-
Yaman Umuroglu authoredYaman Umuroglu authored
test_fifosizing.py 4.97 KiB
# Copyright (c) 2022 Xilinx, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of Xilinx nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
import json
import shutil
from brevitas.export.onnx.generic.manager import BrevitasONNXManager
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.custom_op.registry import getCustomOp
import finn.builder.build_dataflow as build
import finn.builder.build_dataflow_config as build_cfg
from finn.util.basic import make_build_dir
from finn.util.test import get_trained_network_and_ishape
def fetch_test_model(topology, wbits=2, abits=2):
tmp_output_dir = make_build_dir("build_fifosizing_%s_" % topology)
(model, ishape) = get_trained_network_and_ishape(topology, wbits, abits)
chkpt_name = tmp_output_dir + "/model.onnx"
BrevitasONNXManager.export(model, ishape, chkpt_name)
return tmp_output_dir
@pytest.mark.slow
@pytest.mark.vivado
@pytest.mark.fpgadataflow
@pytest.mark.parametrize(
"method", ["largefifo_rtlsim_python", "largefifo_rtlsim_cpp", "characterize"]
)
@pytest.mark.parametrize("topology", ["tfc", "cnv"])
def test_fifosizing_linear(method, topology):
force_python_rtlsim = "python" in method
method_key = "largefifo_rtlsim" if "largefifo_rtlsim" in method else "characterize"
tmp_output_dir = fetch_test_model(topology)
cfg = build_cfg.DataflowBuildConfig(
output_dir=tmp_output_dir,
auto_fifo_depths=True,
auto_fifo_strategy=method_key,
target_fps=10000 if topology == "tfc" else 1000,
force_python_rtlsim=force_python_rtlsim,
synth_clk_period_ns=10.0,
board="Pynq-Z1",
rtlsim_batch_size=100 if topology == "tfc" else 2,
shell_flow_type=build_cfg.ShellFlowType.VIVADO_ZYNQ,
generate_outputs=[
build_cfg.DataflowOutputType.ESTIMATE_REPORTS,
build_cfg.DataflowOutputType.STITCHED_IP,
build_cfg.DataflowOutputType.RTLSIM_PERFORMANCE,
],
default_mem_mode=build_cfg.ComputeEngineMemMode.DECOUPLED,
)
build.build_dataflow_cfg(tmp_output_dir + "/model.onnx", cfg)
with open(tmp_output_dir + "/report/estimate_network_performance.json") as f:
est_data = json.load(f)
with open(tmp_output_dir + "/report/rtlsim_performance.json") as f:
sim_data = json.load(f)
assert (
float(sim_data["stable_throughput[images/s]"])
/ float(est_data["estimated_throughput_fps"])
> 0.9
)
# now run the same build using the generated folding and FIFO config
tmp_output_dir_cmp = fetch_test_model(topology)
cfg_cmp = cfg
cfg_cmp.output_dir = tmp_output_dir_cmp
cfg_cmp.auto_fifo_depths = False
cfg_cmp.target_fps = None
cfg_cmp.generate_outputs = [build_cfg.DataflowOutputType.STITCHED_IP]
cfg_cmp.folding_config_file = tmp_output_dir + "/final_hw_config.json"
build.build_dataflow_cfg(tmp_output_dir_cmp + "/model.onnx", cfg_cmp)
model0 = ModelWrapper(
tmp_output_dir + "/intermediate_models/step_create_stitched_ip.onnx"
)
model1 = ModelWrapper(
tmp_output_dir_cmp + "/intermediate_models/step_create_stitched_ip.onnx"
)
assert len(model0.graph.node) == len(model1.graph.node)
for i in range(len(model0.graph.node)):
node0 = model0.graph.node[i]
node1 = model1.graph.node[i]
assert node0.op_type == node1.op_type
if node0.op_type == "StreamingFIFO":
node0_inst = getCustomOp(node0)
node1_inst = getCustomOp(node1)
assert node0_inst.get_nodeattr("depth") == node1_inst.get_nodeattr("depth")
shutil.rmtree(tmp_output_dir)
shutil.rmtree(tmp_output_dir_cmp)