-
Yaman Umuroglu authoredYaman Umuroglu authored
throughput_test.py 6.44 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import subprocess
import numpy as np
import warnings
from finn.util.basic import gen_finn_dt_tensor
from finn.core.rtlsim_exec import rtlsim_exec
def throughput_test_remote(model, batchsize=1000):
"""Runs the throughput test for the given model remotely on the pynq board.
The metadata properties related to the pynq board have to be set.
Returns a dictionary with results of the throughput test. Returns None
if the test fails."""
pynq_ip = model.get_metadata_prop("pynq_ip")
pynq_port = int(model.get_metadata_prop("pynq_port"))
pynq_username = model.get_metadata_prop("pynq_username")
pynq_password = model.get_metadata_prop("pynq_password")
pynq_target_dir = model.get_metadata_prop("pynq_target_dir")
deployment_dir = model.get_metadata_prop("pynq_deploy_dir")
# extracting last folder of absolute path (deployment_dir)
deployment_folder = os.path.basename(os.path.normpath(deployment_dir))
platform = model.get_metadata_prop("platform")
assert platform in ["alveo", "zynq", "zynq-iodma"]
bitfile = model.get_metadata_prop("bitfile")
bitfile = os.path.basename(bitfile)
if pynq_password == "":
if "zynq" in platform:
raise Exception("PYNQ board remote exec needs password for sudo")
else:
local_prefix = "" # assume we are using an ssh key
warnings.warn("Empty password, make sure you've set up an ssh key")
else:
local_prefix = "sshpass -p %s " % pynq_password
if platform == "alveo":
# Alveo can run without sudo but needs correct environment
remote_prefix = "conda activate finn-pynq-alveo; "
elif "zynq" in platform:
# PYNQ Zynq boards need to execute with sudo
remote_prefix = "echo %s | sudo -S " % pynq_password
# use platform attribute for correct remote execution
if platform == "alveo":
remote_cmd = "bash -ic 'bash alveo_run.sh throughput_test %d' \"" % batchsize
else:
remote_cmd = (
"python3.6 driver.py --exec_mode=throughput_test --batchsize={} "
"--bitfile={} --inputfile=input.npy --outputfile=output.npy "
'--platform={} "'
).format(batchsize, bitfile, platform)
cmd = (
local_prefix + 'ssh {}@{} -p {} "cd {}/{}; ' + remote_prefix + remote_cmd
).format(pynq_username, pynq_ip, pynq_port, pynq_target_dir, deployment_folder)
bash_command = ["/bin/bash", "-c", cmd]
process_throughput_test = subprocess.Popen(bash_command, stdout=subprocess.PIPE)
process_throughput_test.communicate()
# remove any pre-existing metrics file
try:
os.remove("{}/nw_metrics.txt".format(deployment_dir))
except FileNotFoundError:
pass
cmd = local_prefix + "scp -P{} {}@{}:{}/{}/nw_metrics.txt {}".format(
pynq_port,
pynq_username,
pynq_ip,
pynq_target_dir,
deployment_folder,
deployment_dir,
)
bash_command = ["/bin/bash", "-c", cmd]
process_compile = subprocess.Popen(bash_command, stdout=subprocess.PIPE)
process_compile.communicate()
try:
with open("{}/nw_metrics.txt".format(deployment_dir), "r") as file:
res = eval(file.read())
return res
except FileNotFoundError:
return None
def throughput_test_rtlsim(model, batchsize=100):
"""Runs a throughput test for the given IP-stitched model. When combined
with tracing, useful to determine bottlenecks and required FIFO sizes."""
assert (
model.get_metadata_prop("exec_mode") == "rtlsim"
), """Top-level exec_mode
metadata_prop must be set to rtlsim"""
# create random input
iname = model.graph.input[0].name
ishape = model.get_tensor_shape(iname)
ishape_batch = ishape
ishape_batch[0] = batchsize
idt = model.get_tensor_datatype(iname)
dummy_input = gen_finn_dt_tensor(idt, ishape_batch)
# compute input/output sizes
oname = model.graph.output[0].name
oshape = model.get_tensor_shape(oname)
oshape_batch = oshape
oshape_batch[0] = batchsize
odt = model.get_tensor_datatype(oname)
i_bytes = (np.prod(ishape_batch) * idt.bitwidth()) / 8
o_bytes = (np.prod(oshape_batch) * odt.bitwidth()) / 8
# make empty exec context and insert input
ctx = model.make_empty_exec_context()
ctx[iname] = dummy_input
# remove liveness threshold, launch rtlsim
os.environ["LIVENESS_THRESHOLD"] = "-1"
rtlsim_exec(model, ctx)
# extract metrics
cycles = int(model.get_metadata_prop("cycles_rtlsim"))
clk_ns = float(model.get_metadata_prop("clk_ns"))
fclk_mhz = 1 / (clk_ns * 0.001)
runtime_s = (cycles * clk_ns) * (10 ** -9)
res = dict()
res["cycles"] = cycles
res["runtime[ms]"] = runtime_s * 1000
res["throughput[images/s]"] = batchsize / runtime_s
res["DRAM_in_bandwidth[Mb/s]"] = i_bytes * 0.000001 / runtime_s
res["DRAM_out_bandwidth[Mb/s]"] = o_bytes * 0.000001 / runtime_s
res["fclk[mhz]"] = fclk_mhz
res["N"] = batchsize
return res