-
Yaman Umuroglu authoredYaman Umuroglu authored
test_layer_streaming_maxpool_batch.py 6.10 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
from onnx import TensorProto, helper
import finn.core.onnx_exec as oxe
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
from finn.transformation.general import GiveUniqueNodeNames
from finn.util.basic import gen_finn_dt_tensor
from finn.analysis.fpgadataflow.exp_cycles_per_layer import exp_cycles_per_layer
from finn.custom_op.registry import getCustomOp
import numpy as np
def make_single_maxpoolnhwc_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
odt = idt
inp = helper.make_tensor_value_info(
"inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
)
outp = helper.make_tensor_value_info(
"outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, ifm_ch]
)
mp_node = helper.make_node(
"MaxPoolNHWC",
["inp"],
["outp"],
domain="finn",
kernel_shape=[k, k],
strides=[k, k],
pads=[0, 0, 0, 0],
)
graph = helper.make_graph(
nodes=[mp_node], name="mp_graph", inputs=[inp], outputs=[outp]
)
model = helper.make_model(graph, producer_name="mp-model")
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", odt)
return model
def make_single_streamingmaxpool_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
odt = idt
inp = helper.make_tensor_value_info(
"inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
)
outp = helper.make_tensor_value_info(
"outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, ifm_ch]
)
smp_node = helper.make_node(
"StreamingMaxPool_Batch",
["inp"],
["outp"],
domain="finn",
backend="fpgadataflow",
PoolDim=k,
NumChannels=ifm_ch,
ImgDim=ifm_dim,
dataType=idt.name,
)
graph = helper.make_graph(
nodes=[smp_node], name="smp_graph", inputs=[inp], outputs=[outp]
)
model = helper.make_model(graph, producer_name="smp-model")
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", odt)
return model
def prepare_inputs(input_tensor):
return {"inp": input_tensor}
# input datatype
@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2])
# kernel size
@pytest.mark.parametrize("k", [2, 4])
# input dimension
@pytest.mark.parametrize("ifm_dim", [4, 6, 8])
# input channels
@pytest.mark.parametrize("ifm_ch", [1, 2]) # , 2, 3, 4])
# execution mode
@pytest.mark.parametrize("exec_mode", ["rtlsim", "cppsim"])
@pytest.mark.slow
@pytest.mark.vivado
def test_fpgadataflow_streamingmaxpool(idt, k, ifm_dim, ifm_ch, exec_mode):
stride = k
ofm_dim = int(((ifm_dim - k) / stride) + 1)
if ifm_dim % k != 0:
pytest.skip("Skipping StreamingMaxPool test w/ ImgDim % PoolDim != 0")
x = gen_finn_dt_tensor(idt, (1, ifm_dim, ifm_dim, ifm_ch))
# prepare input data
input_dict = prepare_inputs(x)
golden = make_single_maxpoolnhwc_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt)
y_expected = oxe.execute_onnx(golden, input_dict)["outp"]
model = make_single_streamingmaxpool_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt)
if exec_mode == "cppsim":
model = model.transform(SetExecMode("cppsim"))
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
elif exec_mode == "rtlsim":
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(PrepareIP("xc7z020clg400-1", 5))
model = model.transform(HLSSynthIP())
model = model.transform(PrepareRTLSim())
else:
raise Exception("Unknown exec_mode in test_fpgadataflow_slidingwindow")
# execute model
y_produced = oxe.execute_onnx(model, input_dict)["outp"]
assert (y_produced == y_expected).all()
if exec_mode == "rtlsim":
node = model.get_nodes_by_op_type("StreamingMaxPool_Batch")[0]
inst = getCustomOp(node)
sim_cycles = inst.get_nodeattr("sim_cycles")
exp_cycles_dict = model.analysis(exp_cycles_per_layer)
exp_cycles = exp_cycles_dict[str(node)]
assert np.isclose(exp_cycles, sim_cycles, atol=15)
assert exp_cycles != 0