-
Yaman Umuroglu authoredYaman Umuroglu authored
test_brevitas_cnv.py 3.93 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pkg_resources as pk
import pytest
import brevitas.onnx as bo
import numpy as np
import os
import torch
from brevitas.export.onnx.generic.manager import BrevitasONNXManager
from qonnx.core.modelwrapper import ModelWrapper
from qonnx.transformation.fold_constants import FoldConstants
from qonnx.transformation.general import GiveUniqueNodeNames, RemoveStaticGraphInputs
from qonnx.transformation.infer_shapes import InferShapes
from qonnx.util.cleanup import cleanup as qonnx_cleanup
import finn.core.onnx_exec as oxe
from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN
from finn.util.test import get_test_model_trained
export_onnx_path = "test_brevitas_cnv.onnx"
@pytest.mark.brevitas_export
@pytest.mark.parametrize("abits", [1, 2])
@pytest.mark.parametrize("wbits", [1, 2])
@pytest.mark.parametrize("QONNX_export", [False, True])
def test_brevitas_cnv_export_exec(wbits, abits, QONNX_export):
if wbits > abits:
pytest.skip("No wbits > abits cases at the moment")
cnv = get_test_model_trained("CNV", wbits, abits)
ishape = (1, 3, 32, 32)
if QONNX_export:
BrevitasONNXManager.export(cnv, ishape, export_onnx_path)
qonnx_cleanup(export_onnx_path, out_file=export_onnx_path)
model = ModelWrapper(export_onnx_path)
model = model.transform(ConvertQONNXtoFINN())
model.save(export_onnx_path)
else:
bo.export_finn_onnx(cnv, ishape, export_onnx_path)
model = ModelWrapper(export_onnx_path)
model = model.transform(GiveUniqueNodeNames())
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(RemoveStaticGraphInputs())
assert len(model.graph.input) == 1
assert len(model.graph.output) == 1
fn = pk.resource_filename("finn.qnn-data", "cifar10/cifar10-test-data-class3.npz")
input_tensor = np.load(fn)["arr_0"].astype(np.float32)
input_tensor = input_tensor / 255
assert input_tensor.shape == (1, 3, 32, 32)
# run using FINN-based execution
input_dict = {model.graph.input[0].name: input_tensor}
output_dict = oxe.execute_onnx(model, input_dict, True)
produced = output_dict[model.graph.output[0].name]
# do forward pass in PyTorch/Brevitas
input_tensor = torch.from_numpy(input_tensor).float()
expected = cnv.forward(input_tensor).detach().numpy()
assert np.isclose(produced, expected, atol=1e-3).all()
assert np.argmax(produced) == 3
os.remove(export_onnx_path)