-
Tobi-Alonso authoredTobi-Alonso authored
test_fpgadataflow_convinputgenerator.py 6.04 KiB
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import pytest
from onnx import TensorProto, helper
import finn.core.onnx_exec as oxe
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
from finn.transformation.general import GiveUniqueNodeNames
from finn.util.basic import gen_finn_dt_tensor
def make_single_im2col_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt):
odt = idt
inp = helper.make_tensor_value_info(
"inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
)
outp = helper.make_tensor_value_info(
"outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, k * k * ifm_ch]
)
im2col_node = helper.make_node(
"Im2Col",
["inp"],
["outp"],
domain="finn",
backend="fpgadataflow",
stride=stride,
kernel_size=k,
input_shape=str((1, ifm_dim, ifm_dim, ifm_ch)),
pad_amount=0,
pad_value=0,
)
graph = helper.make_graph(
nodes=[im2col_node], name="im2col_graph", inputs=[inp], outputs=[outp]
)
model = helper.make_model(graph, producer_name="im2col-model")
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", odt)
return model
def make_single_slidingwindow_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
):
odt = idt
inp = helper.make_tensor_value_info(
"inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
)
outp = helper.make_tensor_value_info(
"outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, k * k * ifm_ch]
)
SlidingWindow_node = helper.make_node(
"ConvolutionInputGenerator",
["inp"],
["outp"],
domain="finn",
backend="fpgadataflow",
ConvKernelDim=k,
IFMChannels=ifm_ch,
IFMDim=ifm_dim,
OFMDim=ofm_dim,
SIMD=simd,
Stride=stride,
inputDataType=idt.name,
outputDataType=odt.name,
)
graph = helper.make_graph(
nodes=[SlidingWindow_node],
name="slidingwindow_graph",
inputs=[inp],
outputs=[outp],
)
model = helper.make_model(graph, producer_name="slidingwindow-model")
model = ModelWrapper(model)
model.set_tensor_datatype("inp", idt)
model.set_tensor_datatype("outp", odt)
return model
def prepare_inputs(input_tensor):
return {"inp": input_tensor}
# input datatype
@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2])
# kernel size
@pytest.mark.parametrize("k", [2, 3, 4])
# input dimension
@pytest.mark.parametrize("ifm_dim", [4, 6, 8])
# input channels
@pytest.mark.parametrize("ifm_ch", [2, 4]) # , 2, 3, 4])
# Stride
@pytest.mark.parametrize("stride", [1, 2])
# execution mode
@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
# input channel parallelism ("SIMD")
@pytest.mark.parametrize("simd", [1, 2])
@pytest.mark.slow
@pytest.mark.vivado
def test_fpgadataflow_slidingwindow(idt, k, ifm_dim, ifm_ch, stride, exec_mode, simd):
ofm_dim = int(((ifm_dim - k) / stride) + 1)
x = gen_finn_dt_tensor(idt, (1, ifm_dim, ifm_dim, ifm_ch))
model = make_single_slidingwindow_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
)
if exec_mode == "cppsim":
model = model.transform(SetExecMode("cppsim"))
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
elif exec_mode == "rtlsim":
model = model.transform(SetExecMode("rtlsim"))
model = model.transform(GiveUniqueNodeNames())
model = model.transform(PrepareIP("xc7z020clg400-1", 5))
model = model.transform(HLSSynthIP())
model = model.transform(PrepareRTLSim())
else:
raise Exception("Unknown exec_mode in test_fpgadataflow_slidingwindow")
# prepare input data
input_dict = prepare_inputs(x)
# execute model
y_produced = oxe.execute_onnx(model, input_dict)["outp"]
golden = make_single_im2col_modelwrapper(
k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt
)
y_expected = oxe.execute_onnx(golden, input_dict)["outp"]
# if idt == DataType.BIPOLAR:
# y_expected = 2 * y_expected - 1
assert (y_produced == y_expected).all()