-
Yaman Umuroglu authoredYaman Umuroglu authored
test_lookup.py 4.16 KiB
# Copyright (c) 2021, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import onnx # noqa
import os
import torch
from brevitas.export import FINNManager
from torch import nn
from finn.core.datatype import DataType
from finn.core.modelwrapper import ModelWrapper
from finn.core.onnx_exec import execute_onnx
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.infer_shapes import InferShapes
from finn.util.basic import gen_finn_dt_tensor
tmpdir = os.environ["FINN_BUILD_DIR"]
def make_lookup_model(embeddings, ishape, idt, edt):
num_embeddings, embedding_dim = embeddings.shape
class LookupModel(nn.Module):
def __init__(self, num_embeddings, embedding_dim):
super().__init__()
self.lookup = nn.Embedding(
num_embeddings=num_embeddings, embedding_dim=embedding_dim
)
def forward(self, x):
x = self.lookup(x)
return x
torch_model = LookupModel(num_embeddings, embedding_dim)
input_t = torch.zeros(ishape, dtype=torch.int64)
ret = FINNManager.export(torch_model, input_t=input_t, opset_version=11)
model = ModelWrapper(ret)
iname = model.graph.input[0].name
ename = model.graph.node[0].input[0]
model.set_tensor_datatype(iname, idt)
eshape = model.get_tensor_shape(ename)
assert tuple(eshape) == embeddings.shape
model.set_initializer(ename, embeddings)
model.set_tensor_datatype(ename, edt)
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
return model
def test_lookup_export():
export_path = tmpdir + "/test_lookup_export.onnx"
ishape = (1, 10)
idt = DataType["UINT8"]
edt = DataType["FIXED<8,2>"]
num_embeddings = 2 ** idt.bitwidth()
embedding_dim = 2
eshape = (num_embeddings, embedding_dim)
exp_oshape = tuple(list(ishape) + [embedding_dim])
embeddings = gen_finn_dt_tensor(edt, eshape)
model = make_lookup_model(embeddings, ishape, idt, edt)
model.save(export_path)
assert len(model.graph.node) == 1
assert model.graph.node[0].op_type == "Gather"
iname = model.graph.input[0].name
ename = model.graph.node[0].input[0]
oname = model.graph.output[0].name
assert model.get_tensor_datatype(iname) == idt
assert model.get_tensor_datatype(ename) == edt
assert model.get_tensor_datatype(oname) == edt
assert tuple(model.get_tensor_shape(ename)) == eshape
assert tuple(model.get_tensor_shape(oname)) == exp_oshape
assert (model.get_initializer(ename) == embeddings).all()
itensor = gen_finn_dt_tensor(idt, ishape).astype(np.int64)
ret = execute_onnx(model, {iname: itensor})
exp_out = np.take(embeddings, itensor, axis=0)
assert (exp_out == ret[oname]).all()