Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import time
import pytest
from PIL import Image
import os
import numpy as np
import brevitas.onnx as bo
import torch
from finn.custom_op.registry import getCustomOp
from finn.util.pytorch import NormalizePreProc
from finn.util.test import (
get_test_model_trained,
load_test_checkpoint_or_skip,
resize_smaller_side,
crop_center,
)
from finn.core.modelwrapper import ModelWrapper
from finn.core.datatype import DataType
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.infer_data_layouts import InferDataLayouts
from finn.transformation.fold_constants import FoldConstants
from finn.transformation.infer_datatypes import InferDataTypes
from finn.transformation.general import (
GiveReadableTensorNames,
GiveUniqueNodeNames,
GiveUniqueParameterTensors,
RemoveUnusedTensors,
)
from finn.transformation.merge_onnx_models import MergeONNXModels
from finn.transformation.insert_topk import InsertTopK
import finn.transformation.streamline.absorb as absorb
import finn.transformation.streamline.reorder as reorder
from finn.transformation.streamline import Streamline
from finn.transformation.double_to_single_float import DoubleToSingleFloat
from finn.transformation.streamline.remove import RemoveIdentityOps
from finn.transformation.streamline.collapse_repeated import CollapseRepeatedMul
from finn.transformation.change_datalayout import ChangeDataLayoutQuantAvgPool2d
from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds
from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
from finn.transformation.fpgadataflow.create_dataflow_partition import (
CreateDataflowPartition,
)
from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
from finn.core.onnx_exec import execute_onnx
from finn.util.basic import alveo_part_map, alveo_default_platform
build_dir = os.environ["FINN_BUILD_DIR"]
test_board = "U250"
test_platform = alveo_default_platform[test_board]
test_fpga_part = alveo_part_map[test_board]
target_clk_ns = 3
mem_mode = "decoupled"
large_fifo_ram_style = "ultra"
extra_fold = 1
first_layer_res_type = "dsp"
def test_end2end_mobilenet_export():
# export preprocessing
preproc_onnx = build_dir + "/end2end_mobilenet_preproc.onnx"
mean = [0.485, 0.456, 0.406]
std = 0.226
ch = 3
preproc = NormalizePreProc(mean, std, ch)
bo.export_finn_onnx(preproc, (1, 3, 224, 224), preproc_onnx)
preproc_model = ModelWrapper(preproc_onnx)
# set input finn datatype to UINT8
preproc_model.set_tensor_datatype(preproc_model.graph.input[0].name, DataType.UINT8)
preproc_model = preproc_model.transform(InferShapes())
preproc_model = preproc_model.transform(FoldConstants())
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
preproc_model = preproc_model.transform(GiveUniqueNodeNames())
preproc_model = preproc_model.transform(GiveUniqueParameterTensors())
preproc_model = preproc_model.transform(GiveReadableTensorNames())
preproc_model.save(build_dir + "/end2end_mobilenet_preproc.onnx")
# export mobilenet
finn_onnx = build_dir + "/end2end_mobilenet_export.onnx"
mobilenet = get_test_model_trained("mobilenet", 4, 4)
bo.export_finn_onnx(mobilenet, (1, 3, 224, 224), finn_onnx)
# calculate golden output with pytorch/brevitas and save as .npy
# get single image as input and prepare image
img = Image.open("/workspace/finn/tests/brevitas/king_charles.jpg")
# resize smallest side of the image to 256 pixels and resize larger side
# with same ratio
img = resize_smaller_side(256, img)
# crop central 224*224 window
img = crop_center(224, img)
# save image as numpy array and as torch tensor to enable testing in
# brevitas/pytorch and finn and transpose from (H, W, C) to (C, H, W)
img_np = np.asarray(img).copy().astype(np.float32).transpose(2, 0, 1)
img_np = img_np.reshape(1, 3, 224, 224)
np.save(build_dir + "/end2end_mobilenet_input.npy", img_np)
img_torch = torch.from_numpy(img_np).float()
# do forward pass in PyTorch/Brevitas
input_tensor = preproc.forward(img_torch)
golden = mobilenet.forward(input_tensor).detach().numpy()
golden_topk = golden.flatten()
golden_top5 = np.argsort(golden_topk)[-5:]
golden_top5 = np.flip(golden_top5)
golden_top5_prob = []
for index in golden_top5:
golden_top5_prob.append(golden_topk[index])
# save golden output values
np.save(build_dir + "/end2end_mobilenet_golden_top5.npy", golden_top5)
np.save(build_dir + "/end2end_mobilenet_golden_top5_prob.npy", golden_top5_prob)
assert os.path.isfile(finn_onnx)
assert os.path.isfile(build_dir + "/end2end_mobilenet_preproc.onnx")
def test_end2end_mobilenet_tidy_and_merge_with_preproc():
preproc_model = load_test_checkpoint_or_skip(
build_dir + "/end2end_mobilenet_preproc.onnx"
)
model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_export.onnx")
model = model.transform(InferShapes())
model = model.transform(FoldConstants())
model = model.transform(InsertTopK())
# get initializer from Mul that will be absorbed into topk
a0 = model.get_initializer(model.graph.node[-2].input[1])
np.save(build_dir + "/end2end_mobilenet_topk_scale.npy", a0)
model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
model = model.transform(InferShapes())
model = model.transform(InferDataTypes())
model = model.transform(InferDataLayouts())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveUniqueParameterTensors())
model = model.transform(GiveReadableTensorNames())
model = model.transform(MergeONNXModels(preproc_model))
model.save(build_dir + "/end2end_mobilenet_tidy.onnx")
def test_end2end_mobilenet_streamline():
model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_tidy.onnx")
model = model.transform(Streamline())
additional_streamline_transformations = [
DoubleToSingleFloat(),
reorder.MoveMulPastDWConv(),
absorb.AbsorbMulIntoMultiThreshold(),
ChangeDataLayoutQuantAvgPool2d(),
InferDataLayouts(),
reorder.MoveTransposePastScalarMul(),
absorb.AbsorbTransposeIntoFlatten(),
reorder.MoveFlattenPastAffine(),
reorder.MoveFlattenPastTopK(),
reorder.MoveScalarMulPastMatMul(),
CollapseRepeatedMul(),
RemoveIdentityOps(),
RoundAndClipThresholds(),
]
for trn in additional_streamline_transformations:
model = model.transform(trn)
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferDataTypes())
model.save(build_dir + "/end2end_mobilenet_streamlined.onnx")
def test_end2end_mobilenet_lowering():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_mobilenet_streamlined.onnx"
)
model = model.transform(LowerConvsToMatMul())
model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model = model.transform(InferDataTypes())
model = model.transform(RoundAndClipThresholds())
model.save(build_dir + "/end2end_mobilenet_lowered.onnx")
def test_end2end_mobilenet_convert_to_hls_layers():
model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_lowered.onnx")
model = model.transform(to_hls.InferPool_Batch())
model = model.transform(to_hls.InferConvInpGen())
model = model.transform(to_hls.InferVVAU())
model = model.transform(to_hls.InferQuantizedStreamingFCLayer(mem_mode))
model = model.transform(to_hls.InferChannelwiseLinearLayer())
model = model.transform(to_hls.InferLabelSelectLayer())
model = model.transform(InferShapes())
model = model.transform(GiveUniqueNodeNames())
model = model.transform(GiveReadableTensorNames())
model.save(build_dir + "/end2end_mobilenet_hls_layers.onnx")
def test_end2end_mobilenet_folding():
model = load_test_checkpoint_or_skip(
build_dir + "/end2end_mobilenet_hls_layers.onnx"
)
# optional extra folding to use fewer resources
# applied while setting the attributes on each node
assert extra_fold in [1, 2, 4]
# set up folding for the depthwise conv layers impl'd by VVAUs
# each value is PE for a layer
fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
# each tuple is (PE, SIMD, ram_style) for a layer
folding = [
(32, 3, "block"),
(16, 16, "block"),
(16, 16, "block"),
(32, 16, "block"),
(16, 16, "block"),
(32, 16, "block"),
(16, 16, "block"),
(32, 16, "block"),
(32, 16, "block"),
(32, 16, "block"),
(32, 16, "block"),
(32, 16, "block"),
(16, 16, "block"),
(32, 16, "block"),
(4, 4, "block"),
]
for fcl, (pe, simd, ramstyle) in zip(fc_layers, folding):
fcl_inst = getCustomOp(fcl)
fcl_inst.set_nodeattr("PE", pe // extra_fold)
fcl_inst.set_nodeattr("SIMD", simd)
fcl_inst.set_nodeattr("ram_style", ramstyle)
# first layer uses 8-bit weights & activations
# control its compute resource type explicitly
getCustomOp(fc_layers[0]).set_nodeattr("resType", first_layer_res_type)
# set up folding for the depthwise conv layers impl'd by VVAUs
# each value is PE for a layer
vvau_layers = model.get_nodes_by_op_type("Vector_Vector_Activate_Batch")
folding = [32, 32, 64, 16, 32, 8, 16, 16, 16, 16, 16, 4, 8]
for vvau, pe in zip(vvau_layers, folding):
vvau_inst = getCustomOp(vvau)
vvau_inst.set_nodeattr("PE", pe // extra_fold)
# set SIMD in preceeding ConvInputGen to same value
convinputgen = model.find_direct_predecessors(vvau)[0]
convinputgen_inst = getCustomOp(convinputgen)
convinputgen_inst.set_nodeattr("SIMD", pe // extra_fold)
# set SIMD in preceeding FMPadding to same value
padding = model.find_direct_predecessors(convinputgen)[0]
if padding.op_type == "FMPadding_Batch":
padding_inst = getCustomOp(padding)
padding_inst.set_nodeattr("SIMD", pe // extra_fold)
# adjust final pooling layer + its inpgen
pool_node = model.get_nodes_by_op_type("Pool_Batch")[0]
pool_inst = getCustomOp(pool_node)
pool_inst.set_nodeattr("PE", 4 // extra_fold)
pool_inpgen = model.find_direct_predecessors(pool_node)[0]
pool_inpgen_inst = getCustomOp(pool_inpgen)
pool_inpgen_inst.set_nodeattr("SIMD", 4 // extra_fold)
model = model.transform(InferDataLayouts())
model.save(build_dir + "/end2end_mobilenet_folded.onnx")
def test_end2end_mobilenet_create_dataflow_partition():
model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_folded.onnx")
parent_model = model.transform(CreateDataflowPartition())
parent_model.save(build_dir + "/end2end_mobilenet_dataflow_parent.onnx")
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
dataflow_model_filename = sdp_node.get_nodeattr("model")
dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename)
dataflow_model = dataflow_model.transform(RemoveUnusedTensors())
dataflow_model.save(build_dir + "/end2end_mobilenet_dataflow_model.onnx")
@pytest.mark.slow
@pytest.mark.vivado
@pytest.mark.xfail
def test_end2end_mobilenet_cppsim():
model = load_test_checkpoint_or_skip(build_dir + "/end2end_mobilenet_folded.onnx")
x = np.load(build_dir + "/end2end_mobilenet_input.npy")
inp_name = model.graph.input[0].name
out_name = model.graph.output[0].name
inp_dict = {inp_name: x}
start = time.time()
# cppsim
model = model.transform(PrepareCppSim())
model = model.transform(CompileCppSim())
model = model.transform(SetExecMode("cppsim"))
end = time.time()
elapsed_time = end - start
f = open(build_dir + "/end2end_mobilenet_compile_time.txt", "w+")
f.write("Execution time in seconds: " + str(elapsed_time))
f.close()
model.save(build_dir + "/end2end_mobilenet_cppsim.onnx")
ret_cppsim = execute_onnx(model, inp_dict, True)
res_cppsim = ret_cppsim[out_name]
np.save(build_dir + "/end2end_mobilenet_result_cppsim.npy", res_cppsim)
a0 = np.load(build_dir + "/end2end_mobilenet_topk_scale.npy")
res_cppsim_prob = ret_cppsim[model.graph.node[-2].output[0]] * a0
np.save(build_dir + "/end2end_mobilenet_result_cppsim_prob.npy", res_cppsim_prob)
# check result with golden values
golden = np.load(build_dir + "/end2end_mobilenet_golden_top5.npy")
golden_prob = np.load(build_dir + "/end2end_mobilenet_golden_top5_prob.npy")
assert (golden == res_cppsim).all()
assert np.isclose(golden_prob, res_cppsim_prob).all()