Skip to content
Snippets Groups Projects
insert_iodma.py 12.6 KiB
Newer Older
# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from onnx import TensorProto
from onnx import helper as oh
from qonnx.custom_op.registry import getCustomOp
from qonnx.transformation.base import Transformation
from qonnx.transformation.general import SortGraph
from qonnx.util.basic import get_by_name
    """Insert DMA nodes on inputs and outputs, or as specified by filters in
    the constructor."""
    def __init__(
        self,
        max_intfwidth=32,
        insert_input=True,
        insert_output=True,
        insert_extmemw=True,
    ):
        self.insert_input = insert_input
        self.insert_output = insert_output
        self.insert_extmemw = insert_extmemw
        assert (
            2 ** math.log2(max_intfwidth) == max_intfwidth
        ), "max_intfwidth must be a power of 2"
        self.max_intfwidth = max_intfwidth

    def get_mem_init(self, weights, pe, simd):
        """
        Returns matrix ready for pack_innermost_dim_as_hex_string with
        reverse=False (finn.util.data_packing) to return the memory init file
        little endian packed.
        That is, get_mem_init returns:
        elem(pe,simd)
        addr = 0: [(pe-1,simd-1),(pe-1,simd-2),...(0,1),(0,0)]
        addr = 1: [(pe-1,simd*2-1),.......(0,simd+1),(0,simd)]
        .
        """
        # TODO: refactor this into matrixvectoractivation.py, could go into
        # make_weight_file except it doesn't write a file but returns a npy
        # array instead
        assert len(w_shape) == 2, "weights with incorrect number of dims"
        inp_w, out_w = w_shape

        assert out_w % pe == 0, "Malformed weight matrix"
        assert inp_w % simd == 0, "Malformed weight matrix"
        reshaped_w = np.zeros(inp_w * out_w, dtype=np.float32).reshape(-1, pe * simd)

        addr = 0
        for fr in range(out_w // pe):
            for fc in range(inp_w // simd):
                w0_lower = fc * simd
                w0_upper = (fc + 1) * simd
                w1_lower = fr * pe
                w1_upper = (fr + 1) * pe
                tile = weights[w0_lower:w0_upper, w1_lower:w1_upper]
                    rw0_lower = p * simd
                    rw0_upper = (p + 1) * simd
                    reshaped_w[addr, rw0_lower:rw0_upper] = tile[:, p].transpose()
                addr += 1
        reshaped_w = np.flip(reshaped_w, axis=-1)
        return reshaped_w

        # only makes sense for a pure fpgadataflow graph -- so we check!
        all_nodes = list(model.graph.node)
        assert all(
            get_by_name(x.attribute, "backend").s.decode("UTF-8") == "fpgadataflow"
            for x in all_nodes
        )
        # insert IODMAs for graph inputs
        if self.insert_input:
            graph_in_names = [x.name for x in model.graph.input]
            for graph_in_name in graph_in_names:
                first_node = model.find_consumer(graph_in_name)
                if first_node.op_type == "IODMA":
                    # IODMA already inserted for this input
                    continue
                else:
                    in_shape = model.get_tensor_shape(graph_in_name)
                    in_dtype = model.get_tensor_datatype(graph_in_name)
                    first_node_inst = getCustomOp(first_node)
                    in_folded_shape = first_node_inst.get_folded_input_shape()
                    # take advantage of AXI stream width padding for DMA alignment
                    # (AXI streams are always padded to 8 bits)
                    # this is the width of stream output expected from the DMA
                    padded_instream_width = first_node_inst.get_instream_width_padded()
                    padded_instream_bytes = padded_instream_width // 8
                    # determine the feasible interface width
                    transfer_bits = padded_instream_width * np.prod(
                        in_folded_shape[:-1]
                    )
                    intfwidth = math.gcd(transfer_bits, self.max_intfwidth)
                    assert (
                        intfwidth % 8 == 0
                    ), "No feasible interface width for transfer size"
                    # make new buffer
                    first_node_in = oh.make_tensor_value_info(
                        model.make_new_valueinfo_name(), TensorProto.FLOAT, in_shape
                    )
                    model.graph.value_info.append(first_node_in)
                    model.set_tensor_datatype(first_node_in.name, in_dtype)
                    # reroute first node input
                    # FIXME: currently always using 8-bit dtypes to work around the
                    # padding problems for i/o DMA
                    first_node.input[0] = first_node_in.name
                    dma_node = oh.make_node(
                        "IODMA",
                        [graph_in_name],
                        [first_node_in.name],
                        numInputVectors=in_folded_shape[:-1],
                        NumChannels=padded_instream_bytes,
                        dataType="UINT8",
                        intfWidth=intfwidth,
                        streamWidth=padded_instream_width,
                        direction="in",
                        domain="finn.custom_op.fpgadataflow",
                        backend="fpgadataflow",
                    )
                    model.graph.node.insert(0, dma_node)
                    modified = True
        # insert IODMAs for graph outputs
        if self.insert_output:
            graph_out_names = [x.name for x in model.graph.output]
            for graph_out_name in graph_out_names:
                final_node = model.find_producer(graph_out_name)
                if final_node.op_type == "IODMA":
                    continue
                else:
                    out_shape = model.get_tensor_shape(graph_out_name)
                    out_dtype = model.get_tensor_datatype(graph_out_name)
                    final_node_inst = getCustomOp(final_node)
                    out_folded_shape = final_node_inst.get_folded_output_shape()
                    # take advantage of AXI stream width padding for DMA alignment
                    # (AXI streams are always padded to 8 bits)
                    # this is the width of stream input to DMA
                    padded_outstream_width = (
                        final_node_inst.get_outstream_width_padded()
                    )
                    padded_outstream_bytes = padded_outstream_width // 8
                    # determine the feasible interface width
                    transfer_bits = padded_outstream_width * np.prod(
                        out_folded_shape[:-1]
                    )
                    intfwidth = math.gcd(transfer_bits, self.max_intfwidth)
                    assert (
                        intfwidth % 8 == 0
                    ), "No feasible interface width for transfer size"
                    # make new buffer
                    final_node_out = oh.make_tensor_value_info(
                        model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape
                    )
                    model.graph.value_info.append(final_node_out)
                    model.set_tensor_datatype(final_node_out.name, out_dtype)
                    # reroute final node output to final_node_out_name
                    final_node.output[0] = final_node_out.name
                    # FIXME: currently always using 8-bit dtypes to work around the
                    # padding problems for i/o DMA
                    dma_node = oh.make_node(
                        "IODMA",
                        [final_node_out.name],
                        [graph_out_name],
                        numInputVectors=out_folded_shape[:-1],
                        NumChannels=padded_outstream_bytes,
                        dataType="UINT8",
                        intfWidth=intfwidth,
                        streamWidth=padded_outstream_width,
                        direction="out",
                        domain="finn.custom_op.fpgadataflow",
                        backend="fpgadataflow",
                    )
                    model.graph.node.append(dma_node)
                    modified = True
        if self.insert_extmemw:
            # parse matrixvectoractivation layers looking for external weights with no
            # attached IODMA
            fc_extw_nodes = list(
                filter(
                    lambda x: x.op_type
                    in ["MatrixVectorActivation", "VectorVectorActivation"]
                    and getCustomOp(x).get_nodeattr("mem_mode") == "external"
                    and model.find_producer(x.input[1]) is None,
                    all_nodes,
                )
            )
            for fc_node in fc_extw_nodes:
                fc_inst = getCustomOp(fc_node)
                fc_w_name = fc_node.input[1]
                w_shape = model.get_tensor_shape(fc_w_name)
                w_dtype = model.get_tensor_datatype(fc_w_name)
                transfer_bits = np.prod(w_shape) * w_dtype.bitwidth()
                intfwidth = math.gcd(transfer_bits, self.max_intfwidth)
                assert (
                    intfwidth % 8 == 0
                ), "No feasible interface width for transfer size"
                # calculate width of stream output from DMA
                pe = get_by_name(fc_node.attribute, "PE").i
                simd = get_by_name(fc_node.attribute, "SIMD").i
                streamWidth = fc_inst.get_weightstream_width_padded()
                W = model.get_initializer(fc_w_name)
                iodma_mem = self.get_mem_init(W, pe, simd)
                model.set_initializer(fc_w_name, iodma_mem)

                fc_node_in = oh.make_tensor_value_info(
                    model.make_new_valueinfo_name(), TensorProto.FLOAT, iodma_mem.shape
                model.graph.value_info.append(fc_node_in)
                model.set_tensor_datatype(fc_node_in.name, w_dtype)
                model.set_initializer(fc_node_in.name, W)
                    [fc_w_name],
                    [fc_node_in.name],
                    numInputVectors=[iodma_mem.shape[0]],
                    NumChannels=pe * simd,
                    dataType=str(w_dtype.name),
                    streamWidth=streamWidth,
                    domain="finn.custom_op.fpgadataflow",
                fc_node.input[1] = fc_node_in.name
                # expand inFIFODepths for new second input of node
                infifo_depth = fc_inst.get_nodeattr("inFIFODepths")
                infifo_depth.append(8)
                fc_inst.set_nodeattr("inFIFODepths", infifo_depth)
                modified = True
        if modified:
        return (model, modified)