DroneXControllerService.cpp 79.7 KB
Newer Older
1
2
3
//    Copyright (C) 2017, ETH Zurich, D-ITET, Paul Beuchat, Angel Romero, Cyrill Burgener, Marco Mueller, Philipp Friedli
//
//    This file is part of D-FaLL-System.
pragash1's avatar
pragash1 committed
4
//
5
6
7
8
//    D-FaLL-System is free software: you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation, either version 3 of the License, or
//    (at your option) any later version.
pragash1's avatar
pragash1 committed
9
//
10
11
12
13
//    D-FaLL-System is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
pragash1's avatar
pragash1 committed
14
//
15
16
//    You should have received a copy of the GNU General Public License
//    along with D-FaLL-System.  If not, see <http://www.gnu.org/licenses/>.
pragash1's avatar
pragash1 committed
17
//
18
19
20
21
22
23
24
25
26
27
//
//    ----------------------------------------------------------------------------------
//    DDDD        FFFFF        L     L           SSSS  Y   Y   SSSS  TTTTT  EEEEE  M   M
//    D   D       F      aaa   L     L          S       Y Y   S        T    E      MM MM
//    D   D  ---  FFFF  a   a  L     L     ---   SSS     Y     SSS     T    EEE    M M M
//    D   D       F     a  aa  L     L              S    Y        S    T    E      M   M
//    DDDD        F      aa a  LLLL  LLLL       SSSS     Y    SSSS     T    EEEEE  M   M
//
//
//    DESCRIPTION:
pragash1's avatar
pragash1 committed
28
//    Place for students to implement their controller
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
//
//    ----------------------------------------------------------------------------------





// INCLUDE THE HEADER
#include "nodes/DroneXControllerService.h"





//    ----------------------------------------------------------------------------------
//    FFFFF  U   U  N   N   CCCC  TTTTT  III   OOO   N   N
//    F      U   U  NN  N  C        T     I   O   O  NN  N
//    FFF    U   U  N N N  C        T     I   O   O  N N N
//    F      U   U  N  NN  C        T     I   O   O  N  NN
//    F       UUU   N   N   CCCC    T    III   OOO   N   N
//
//    III M   M PPPP  L     EEEEE M   M EEEEE N   N TTTTT   A   TTTTT III  OOO  N   N
//     I  MM MM P   P L     E     MM MM E     NN  N   T    A A    T    I  O   O NN  N
//     I  M M M PPPP  L     EEE   M M M EEE   N N N   T   A   A   T    I  O   O N N N
//     I  M   M P     L     E     M   M E     N  NN   T   AAAAA   T    I  O   O N  NN
//    III M   M P     LLLLL EEEEE M   M EEEEE N   N   T   A   A   T   III  OOO  N   N
//    ----------------------------------------------------------------------------------
pragash1's avatar
pragash1 committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193




// REMINDER OF THE NAME OF USEFUL CLASS VARIABLE
// // > Mass of the Crazyflie quad-rotor, in [grams]
// float m_mass_CF_grams;
// // > Mass of the letters to be lifted, in [grams]
// float m_mass_E_grams;
// float m_mass_T_grams;
// float m_mass_H_grams;
// // > Total mass of the Crazyflie plus whatever it is carrying, in [grams]
// float m_mass_total_grams;
// // Thickness of the object at pick-up and put-down, in [meters]
// // > This should also account for extra height due to
// //   the surface where the object is
// float m_thickness_of_object_at_pickup;
// float m_thickness_of_object_at_putdown;
// // (x,y) coordinates of the pickup location
// std::vector<float> m_pickup_coordinates_xy(2);
// // (x,y) coordinates of the drop off location
// std::vector<float> m_dropoff_coordinates_xy_for_E(2);
// std::vector<float> m_dropoff_coordinates_xy_for_T(2);
// std::vector<float> m_dropoff_coordinates_xy_for_H(2);
// // Length of the string from the Crazyflie
// // to the end of the DroneX, in [meters]
// float m_dronex_string_length;
// // > The setpoints for (x,y,z) position and yaw angle, in that order
// float m_setpoint[4] = {0.0,0.0,0.4,0.0};
// float m_setpoint_for_controller[4] = {0.0,0.0,0.4,0.0};
// // > Small adjustments to the x-y setpoint
// float m_xAdjustment = 0.0f;
// float m_yAdjustment = 0.0f;
// // Boolean for whether to limit rate of change of the setpoint
// bool m_shouldSmoothSetpointChanges = true;
// // Max setpoint change per second
// float m_max_setpoint_change_per_second_horizontal;
// float m_max_setpoint_change_per_second_vertical;
// float m_max_setpoint_change_per_second_yaw_degrees;
// float m_max_setpoint_change_per_second_yaw_radians;
// // Frequency at which the controller is running
// float m_vicon_frequency;


// A FEW EXTRA COMMENTS ABOUT THE MOST IMPORTANT VARIABLES

// Variable name:    m_setpoint
// Description:
// This is a float array of length 4. It specifies a location
// in space where you want the drone to be. The 4 element are:
// >> m_setpoint[0]   The x-poistion in [meters]
// >> m_setpoint[1]   The y-poistion in [meters]
// >> m_setpoint[2]   The z-poistion in [meters]
// >> m_setpoint[3]   The yaw heading angle in [radians]


// Variable name:    m_setpoint_for_controller
// Description:
// Similar to the variable "m_setpoint" this is also float array
// of length 4 that specifies an (x,y,z,yaw) location. The
// difference it that this variable specifies the location where
// the low-level controller is guiding the drone to be.
// HINT: to make changes the "m_setpoint" variable, you can edit
// the function named "perControlCycleOperations" so that the
// "m_setpoint_for_controller" changes by a maximum amount at
// each cycle of the contoller



// THIS FUNCTION IS CALLED AT "m_vicon_frequency" HERTZ.
// IT CAN BE USED TO ADJUST THINGS IN "REAL TIME".
// For example, the equation:
// >> m_max_setpoint_change_per_second_horizontal / m_vicon_frequency
// will convert the "change per second" to a "change per cycle".

void perControlCycleOperations()
{
	if (m_shouldSmoothSetpointChanges)
	{
		for(int i = 0; i < 4; ++i)
		{
			float max_for_this_coordinate;
			// FILLE IN THE STATE INERTIAL ESTIMATE TO BE USED FOR CONTROL
			switch (i)
			{
				case 0:
					max_for_this_coordinate = m_max_setpoint_change_per_second_horizontal / m_vicon_frequency;
					break;
				case 1:
					max_for_this_coordinate = m_max_setpoint_change_per_second_horizontal / m_vicon_frequency;
					break;
				case 2:
					max_for_this_coordinate = m_max_setpoint_change_per_second_vertical / m_vicon_frequency;
					break;
				case 3:
					max_for_this_coordinate = m_max_setpoint_change_per_second_yaw_radians / m_vicon_frequency;
					break;
				// Handle the exception
				default:
					max_for_this_coordinate = 0.0f;
					break;
			}

			// Compute the difference in setpoint
			float setpoint_difference = m_setpoint[i] - m_setpoint_for_controller[i];

			// Clip the difference to the maximum
			if (setpoint_difference > max_for_this_coordinate)
			{
				setpoint_difference = max_for_this_coordinate;
			}
			else if (setpoint_difference < -max_for_this_coordinate)
			{
				setpoint_difference = -max_for_this_coordinate;
			}

			// Update the setpoint of the controller
			m_setpoint_for_controller[i] += setpoint_difference;
		}

	}
	else
	{
		m_setpoint_for_controller[0] = m_setpoint[0];
		m_setpoint_for_controller[1] = m_setpoint[1];
		m_setpoint_for_controller[2] = m_setpoint[2];
		m_setpoint_for_controller[3] = m_setpoint[3];
	}
}








void buttonPressed_take_off(){
pragash1's avatar
pragash1 committed
194

195
	//if(flying_state == DRONEX_STATE_GROUND || flying_state == DRONEX_STATE_ON_MOTHERSHIP){
pragash1's avatar
pragash1 committed
196
197
		ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Taking off...");
		flying_state = DRONEX_STATE_TAKING_OFF;
198
199
200
	//}else{
	//	ROS_ERROR("Cannot change to DRONEX_STATE_TAKING_OFF");
	//}
pragash1's avatar
pragash1 committed
201
202
203
}

void buttonPressed_land(){
204
	//if(flying_state == DRONEX_STATE_HOVER){
mastefan's avatar
mastefan committed
205
206
207
		ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Start flight-sequence LA...");
		// OLD:flying_state = DRONEX_STATE_LAND_ON_MOTHERSHIP;
		// NEW: 
mastefan's avatar
mastefan committed
208
		flightSequence = SEQUENCE_LAND_ON_MOTHERSHIP;
pragash1's avatar
pragash1 committed
209
210
}

pragash1's avatar
pragash1 committed
211
212
213
void buttonPressed_abort(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Abort Mission!");
	flying_state = DRONEX_STATE_LAND_ON_GROUND;
mastefan's avatar
mastefan committed
214
215
216

	// reset start position
	savedStartCoordinates = false;
pragash1's avatar
pragash1 committed
217
218
}

219
220
void buttonPressed_integrator_on(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Turn ON integrator");
maruggv's avatar
maruggv committed
221
	integratorFlag = DRONEX_INTEGRATOR_ON;
222
223
224
225
}

void buttonPressed_integrator_off(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Turn OFF integrator");
maruggv's avatar
maruggv committed
226
	integratorFlag = DRONEX_INTEGRATOR_OFF;
227
228
229
230
}

void buttonPressed_integrator_reset(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] RESET integrator to zero");
maruggv's avatar
maruggv committed
231
	integratorFlag = DRONEX_INTEGRATOR_RESET;
232
233
}

mastefan's avatar
mastefan committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
void integratorCallback (const Setpoint& integrParams ) {
    integrator_sum_XYZ[0] = integrParams.x;
    integrator_sum_XYZ[1] = integrParams.y;
    integrator_sum_XYZ[2] = integrParams.z;
}

void WeightParamCallback (const Setpoint& weightParam ) {
    // TODO for changing yaml: set weight in yaml OR just set m_mass_CF_grams?
    // m_mass_CF_grams = weightParam.x;

}

void PitchBaselineParamCallback(const Setpoint& pitchAngleParam ) {
    // TODO 
}




pragash1's avatar
pragash1 committed
253
254


255
256
257
258
259
260





//    ------------------------------------------------------------------------------
pragash1's avatar
pragash1 committed
261
//     OOO   U   U  TTTTT  EEEEE  RRRR
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//    O   O  U   U    T    E      R   R
//    O   O  U   U    T    EEE    RRRR
//    O   O  U   U    T    E      R  R
//     OOO    UUU     T    EEEEE  R   R
//
//     CCCC   OOO   N   N  TTTTT  RRRR    OOO   L           L       OOO    OOO   PPPP
//    C      O   O  NN  N    T    R   R  O   O  L           L      O   O  O   O  P   P
//    C      O   O  N N N    T    RRRR   O   O  L           L      O   O  O   O  PPPP
//    C      O   O  N  NN    T    R  R   O   O  L           L      O   O  O   O  P
//     CCCC   OOO   N   N    T    R   R   OOO   LLLLL       LLLLL   OOO    OOO   P
//    ----------------------------------------------------------------------------------

// This function is the callback that is linked to the "DroneXController" service that
// is advertised in the main function. This must have arguments that match the
// "input-output" behaviour defined in the "Controller.srv" file (located in the "srv"
// folder)
//
// The arument "request" is a structure provided to this service with the following two
// properties:
// request.ownCrazyflie
// This property is itself a structure of type "CrazyflieData",  which is defined in the
// file "CrazyflieData.msg", and has the following properties
// string crazyflieName
//     float64 x                         The x position of the Crazyflie [metres]
//     float64 y                         The y position of the Crazyflie [metres]
//     float64 z                         The z position of the Crazyflie [metres]
//     float64 roll                      The roll component of the intrinsic Euler angles [radians]
//     float64 pitch                     The pitch component of the intrinsic Euler angles [radians]
//     float64 yaw                       The yaw component of the intrinsic Euler angles [radians]
//     float64 acquiringTime #delta t    The time elapsed since the previous "CrazyflieData" was received [seconds]
//     bool occluded                     A boolean indicted whether the Crazyflie for visible at the time of this measurement
// The values in these properties are directly the measurement taken by the Vicon
// motion capture system of the Crazyflie that is to be controlled by this service
//
// request.otherCrazyflies
// This property is an array of "CrazyflieData" structures, what allows access to the
// Vicon measurements of other Crazyflies.
//
// The argument "response" is a structure that is expected to be filled in by this
// service by this function, it has only the following property
// response.ControlCommand
// This property is iteself a structure of type "ControlCommand", which is defined in
// the file "ControlCommand.msg", and has the following properties:
//     float32 roll                      The command sent to the Crazyflie for the body frame x-axis
//     float32 pitch                     The command sent to the Crazyflie for the body frame y-axis
//     float32 yaw                       The command sent to the Crazyflie for the body frame z-axis
//     uint16 motorCmd1                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd2                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd3                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd4                  The command sent to the Crazyflie for motor 1
//     uint8 onboardControllerType       The flag sent to the Crazyflie for indicating how to implement the command
pragash1's avatar
pragash1 committed
313
//
314
315
// IMPORTANT NOTES FOR "onboardControllerType"  AND AXIS CONVENTIONS
// > The allowed values for "onboardControllerType" are in the "Defines" section at the
pragash1's avatar
pragash1 committed
316
317
318
319
320
//   top of this file, they are:
//   CF_COMMAND_TYPE_MOTOR
//   CF_COMMAND_TYPE_RATE
//   CF_COMMAND_TYPE_ANGLE.
// > With CF_COMMAND_TYPE_RATE the ".roll", ".ptich", and ".yaw" properties of "response.ControlCommand"
321
322
//   specify the angular rate in [radians/second] that will be requested from the
//   PID controllers running in the Crazyflie 2.0 firmware.
pragash1's avatar
pragash1 committed
323
// > With CF_COMMAND_TYPE_RATE the ".motorCmd1" to ".motorCmd4" properties of "response.ControlCommand"
324
325
326
//   are the baseline motor commands requested from the Crazyflie, with the adjustment
//   for body rates being added on top of this in the firmware (i.e., as per the code
//   of the "distribute_power" function provided in exercise sheet 2).
pragash1's avatar
pragash1 committed
327
// > With CF_COMMAND_TYPE_RATE the axis convention for the roll, pitch, and yaw body rates returned
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
//   in "response.ControlCommand" should use right-hand coordinate axes with x-forward
//   and z-upwards (i.e., the positive z-axis is aligned with the direction of positive
//   thrust). To assist, teh following is an ASCII art of this convention:
//
// ASCII ART OF THE CRAZYFLIE 2.0 LAYOUT
//
//  > This is a top view,
//  > M1 to M4 stand for Motor 1 to Motor 4,
//  > "CW"  indicates that the motor rotates Clockwise,
//  > "CCW" indicates that the motor rotates Counter-Clockwise,
//  > By right-hand axis convention, the positive z-direction points our of the screen,
//  > This being a "top view" means tha the direction of positive thrust produced
//    by the propellers is also out of the screen.
//
//        ____                         ____
//       /    \                       /    \
//  (CW) | M4 |           x           | M1 | (CCW)
//       \____/\          ^          /\____/
//            \ \         |         / /
//             \ \        |        / /
//              \ \______ | ______/ /
//               \        |        /
//                |       |       |
//        y <-------------o       |
//                |               |
//               / _______________ \
//              / /               \ \
//             / /                 \ \
//        ____/ /                   \ \____
//       /    \/                     \/    \
// (CCW) | M3 |                       | M2 | (CW)
//       \____/                       \____/
//
//
//
// This function WILL NEED TO BE edited for successful completion of the PPS exercise
bool calculateControlOutput(Controller::Request &request, Controller::Response &response)
{

pragash1's avatar
pragash1 committed
367
368
369
	// Keep track of time
	m_time_ticks++;
	m_time_seconds = float(m_time_ticks) / m_vicon_frequency;
370

371

mastefan's avatar
mastefan committed
372
373


374
375
	switch(flying_state){
		case DRONEX_STATE_APPROACH:
376
		{
mastefan's avatar
mastefan committed
377
			//ROS_INFO("DRONEX_STATE_APPROACH");
378
379
			dronexSetpoint.x = request.otherCrazyflies[0].x;
			dronexSetpoint.y = request.otherCrazyflies[0].y;
mastefan's avatar
mastefan committed
380
381
382
383
384
385
386
387
			dronexSetpoint.z = request.otherCrazyflies[0].z + 0.4;//0.6;


			/*ROS_INFO_STREAM("APPROACH: (x,y,z) Difference: (" 
				<< request.ownCrazyflie.x-dronexSetpoint.x << ", " 
				<< request.ownCrazyflie.y-dronexSetpoint.y << ", " 
				<< request.ownCrazyflie.z-dronexSetpoint.z << ")");
			*/
mastefan's avatar
mastefan committed
388

mastefan's avatar
mastefan committed
389
390
			if(abs(request.ownCrazyflie.x-dronexSetpoint.x) < tol_approach[0] && abs(request.ownCrazyflie.y-dronexSetpoint.y) < tol_approach[1] &&
				abs(request.ownCrazyflie.z-dronexSetpoint.z) < tol_approach[2] ){
mastefan's avatar
mastefan committed
391
392
393
				approachedFlag = true;
				ROS_INFO("approached");
			}
394
			//setpointCallback(dronexSetpoint);
395
		}
396
397
		break;

398
		case DRONEX_STATE_GROUND:
399
		{
mastefan's avatar
mastefan committed
400
401
			//ROS_INFO("DRONEX_STATE_GROUND");
			// Variable for choosing flight sequence off
mastefan's avatar
mastefan committed
402
			flightSequence = SEQUENCE_NONE;
mastefan's avatar
mastefan committed
403
404
405
406
407
408
409
410
411
412

			// Flags of landing sequence reset
			tookOffFlag = false;
			approachedFlag = false;
			//bool landedFlag = true;

			dronexSetpoint.x = request.ownCrazyflie.x;
			dronexSetpoint.y = request.ownCrazyflie.y;
			dronexSetpoint.z = request.ownCrazyflie.z;

413
414
		}
		break;
415

mastefan's avatar
mastefan committed
416
417
418
419
		case DRONEX_STATE_ON_MOTHERSHIP:
		{
			//ROS_INFO("DRONEX_STATE_ON_MOTHERSHIP");
			// Variable for choosing flight sequence off
mastefan's avatar
mastefan committed
420
			flightSequence = SEQUENCE_NONE;
mastefan's avatar
mastefan committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

			// Flags of landing sequence reset
			tookOffFlag = false;
			approachedFlag = false;
			//bool landedFlag = true;

			dronexSetpoint.x = request.ownCrazyflie.x;
			dronexSetpoint.y = request.ownCrazyflie.y;
			dronexSetpoint.z = request.ownCrazyflie.z;

		}
		break;

		case DRONEX_STATE_LAND_ON_MOTHERSHIP:
		{
mastefan's avatar
mastefan committed
436
			//ROS_INFO("DRONEX_STATE_LAND_ON_MOTHERSHIP");
mastefan's avatar
mastefan committed
437
438
439
			//to land on mothership (17.10. vm)
			dronexSetpoint.x = request.otherCrazyflies[0].x;	//set setpoint to droneX x y and z coordinates
			dronexSetpoint.y = request.otherCrazyflies[0].y;
mastefan's avatar
mastefan committed
440
			dronexSetpoint.z = request.otherCrazyflies[0].z + 0.05;
mastefan's avatar
mastefan committed
441
442
443
		}
		break;

pragash1's avatar
pragash1 committed
444
		case DRONEX_STATE_LAND_ON_GROUND:
445
		{
mastefan's avatar
mastefan committed
446
447
			if(tookOffFlag){
				ROS_INFO("DRONEX_STATE_LAND_ON_GROUND");
448
				// to land on ground (17.10. vm)
mastefan's avatar
mastefan committed
449
450
				dronexSetpoint.x = request.ownCrazyflie.x;
				dronexSetpoint.y = request.ownCrazyflie.y;
mastefan's avatar
mastefan committed
451
				dronexSetpoint.z = 0.0;
pragash1's avatar
pragash1 committed
452

mastefan's avatar
mastefan committed
453
454
				tookOffFlag = false;
			}
pragash1's avatar
pragash1 committed
455

456
457
		}
		break;
mastefan's avatar
mastefan committed
458

459
		case DRONEX_STATE_TAKING_OFF:
460
		{
mastefan's avatar
mastefan committed
461
			//ROS_INFO_STREAM("DRONEX_STATE_TAKING_OFF");
pragash1's avatar
pragash1 committed
462

mastefan's avatar
mastefan committed
463
464
			if(!savedStartCoordinates)
			{
mastefan's avatar
mastefan committed
465
466
				startCoordinateX = request.ownCrazyflie.x; // Nöd sicher öbs das brucht. Idee: Afangscoordinate abspeichere zum in Hover state z ende.
				startCoordinateY = request.ownCrazyflie.y;
mastefan's avatar
mastefan committed
467
				startCoordinateZ = request.ownCrazyflie.z;
468

mastefan's avatar
mastefan committed
469
470
				savedStartCoordinates = true;
				//setpointCallback(dronexSetpoint);
mastefan's avatar
mastefan committed
471
472
473
474
				ROS_INFO_STREAM("DRONEX: saved start Coordinates");
				ROS_INFO_STREAM("x = " << startCoordinateX);
				ROS_INFO_STREAM("y = " << startCoordinateY);
				ROS_INFO_STREAM("z = " << startCoordinateZ);
475
				
mastefan's avatar
mastefan committed
476
477
478
			}

			dronexSetpoint.x = startCoordinateX;
479
			dronexSetpoint.y = startCoordinateY;
mastefan's avatar
mastefan committed
480
			dronexSetpoint.z = startCoordinateZ + 0.4;
mastefan's avatar
mastefan committed
481
				
mastefan's avatar
mastefan committed
482
483
484
485
			ROS_INFO_STREAM("TO: (x,y,z) Difference: (" 
				<< request.ownCrazyflie.x-dronexSetpoint.x << ", " 
				<< request.ownCrazyflie.y-dronexSetpoint.y << ", " 
				<< request.ownCrazyflie.z-dronexSetpoint.z << ")");
mastefan's avatar
mastefan committed
486

mastefan's avatar
mastefan committed
487
488
			if(abs(request.ownCrazyflie.x-dronexSetpoint.x) < tol_takeoff[0] && abs(request.ownCrazyflie.y-dronexSetpoint.y) < tol_takeoff[1] &&
				abs(request.ownCrazyflie.z-dronexSetpoint.z) < tol_takeoff[2]) {
mastefan's avatar
mastefan committed
489
490
				ROS_INFO("took off");
				tookOffFlag = true;
mastefan's avatar
mastefan committed
491
492

				ROS_INFO_STREAM("Entering: DRONEX_STATE_HOVER");
mastefan's avatar
mastefan committed
493
				flying_state = DRONEX_STATE_HOVER;
mastefan's avatar
mastefan committed
494
			}
495
496
497
		}
		break;

mastefan's avatar
mastefan committed
498
		case DRONEX_STATE_HOVER:
499
		{
mastefan's avatar
mastefan committed
500
			//ROS_INFO_STREAM("DRONEX_STATE_HOVER");	
mastefan's avatar
mastefan committed
501
502
503
504
505
506
			// keep setpoint constant
			/*
			dronexSetpoint.x = dronexSetpoint.x;
			dronexSetpoint.y = dronexSetpoint.y;
			dronexSetpoint.z = dronexSetpoint.z;
			*/
507
508
		}
		break;
mastefan's avatar
mastefan committed
509
510

		
511
	} // END switch case
512

mastefan's avatar
mastefan committed
513
514
515

		
	
mastefan's avatar
mastefan committed
516
	// flightSeqeunce 1: simple approaching and landing on static mothership
517
	if (flightSequence == SEQUENCE_LAND_ON_MOTHERSHIP){
mastefan's avatar
mastefan committed
518
		//ROS_INFO_STREAM("Entering: DRONEX_STATE_TAKING_OFF");
mastefan's avatar
mastefan committed
519
		flying_state = DRONEX_STATE_TAKING_OFF;
mastefan's avatar
mastefan committed
520

521
522
		//ROS_INFO_STREAM("Flight sequence: Landing on mothership");
		if(tookOffFlag){
mastefan's avatar
mastefan committed
523
			//ROS_INFO_STREAM("Entering: DRONEX_STATE_APPROACH");
524
525
526
			flying_state = DRONEX_STATE_APPROACH;

			if(approachedFlag){
mastefan's avatar
mastefan committed
527
528
				ROS_INFO_STREAM("Entering: DRONEX_STATE_LAND_ON_MOTHERSHIP");
				flying_state = DRONEX_STATE_LAND_ON_MOTHERSHIP;
mastefan's avatar
mastefan committed
529
530
			}

531
532
		}

533
	}
534

mastefan's avatar
mastefan committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
	// flightSequence 2: approach and land with velocity optimized controller
	// TODO: define SEQUENCE names in .h (maybe rename sequences)
	if (flightSequence == SEQUENCE_2){
		flying_state = DRONEX_STATE_TAKING_OFF;

		if (tookOffFlag){
			// TODO:
			// approach landing zone: maybe a point "behind" the mothership in some angle
			// maybe turn to yaw so that CF points to mothership
			// -> in DRONEX_STATE_APPROACH or own function

			if (approachedFlag){
				// TODO:
				// turn on velocity optimized controller
				// land and turn off motors, when velocity and position requirements met
				// -> define i.e. tol_velocity, tol_land[3]
			}
		}

	}
*/

	calculateDroneXVelocity(request);

560
561
	setpointCallback(dronexSetpoint);

562
563
564
	/*dronexSetpoint.x = request.otherCrazyflies[0].x;
	dronexSetpoint.y = request.otherCrazyflies[0].y;
	dronexSetpoint.z = request.otherCrazyflies[0].z + 0.3*/
565

566
	//setpointCallback(dronexSetpoint);
pragash1's avatar
pragash1 committed
567
	// CALL THE FUNCTION FOR PER CYLCE OPERATIONS
pragash1's avatar
pragash1 committed
568

569
	perControlCycleOperations();
pragash1's avatar
pragash1 committed
570

pragash1's avatar
pragash1 committed
571
572
573
574
	// THIS IS THE START OF THE "OUTER" CONTROL LOOP
	// > i.e., this is the control loop run on this laptop
	// > this function is called at the frequency specified
	// > this function performs all estimation and control
575
576


pragash1's avatar
pragash1 committed
577
578
579
580
581
	// PERFORM THE ESTIMATOR UPDATE FOR THE INTERIAL FRAME STATE
	// > After this function is complete the class variable
	//   "current_stateInertialEstimate" is updated and ready
	//   to be used for subsequent controller copmutations
	performEstimatorUpdate_forStateInterial(request);
582
583


mastefan's avatar
mastefan committed
584
	
585
586
587



pragash1's avatar
pragash1 committed
588
589
	// CARRY OUT THE CONTROLLER COMPUTATIONS
	// Call the function that performs the control computations for this mode
590

591
	// Turn motors off if wanted or do LQR-control
592

mastefan's avatar
mastefan committed
593
	if(flying_state == DRONEX_STATE_LAND_ON_GROUND && (request.ownCrazyflie.z < 0.05 )){
mastefan's avatar
mastefan committed
594
595
		ROS_INFO("landed -> DRONEX_STATE_ON_GROUND");
		flying_state = DRONEX_STATE_GROUND;
596
	}
mastefan's avatar
mastefan committed
597
598
599
	else if(flying_state == DRONEX_STATE_LAND_ON_MOTHERSHIP && 	(abs(request.ownCrazyflie.x - request.otherCrazyflies[0].x) < tol_land[0]) &&
																(abs(request.ownCrazyflie.y - request.otherCrazyflies[0].y) < tol_land[1]) && 
																(abs(request.ownCrazyflie.z - 0.03 - request.otherCrazyflies[0].z) < tol_land[2]) ){
mastefan's avatar
mastefan committed
600
601
		ROS_INFO("landed -> DRONEX_STATE_ON_MOTHERSHIP");
		flying_state = DRONEX_STATE_ON_MOTHERSHIP;
602
	}
mastefan's avatar
mastefan committed
603
604

	if(flying_state == DRONEX_STATE_GROUND || flying_state == DRONEX_STATE_ON_MOTHERSHIP){
605
606
607
		motorsOFF(response);
	}
	else{
mastefan's avatar
mastefan committed
608
609
610
611
612
613
		calculateControlOutputDroneX(request, response);

		// for debugging:
		/*ROS_INFO_STREAM("deltaX to Mothership: " << request.ownCrazyflie.x - request.otherCrazyflies[0].x);
		ROS_INFO_STREAM("deltaY to Mothership: " << request.ownCrazyflie.y - request.otherCrazyflies[0].y);
		ROS_INFO_STREAM("deltaZ to Mothership: " << request.ownCrazyflie.z - request.otherCrazyflies[0].z);*/
pragash1's avatar
pragash1 committed
614
	}
pragash1's avatar
pragash1 committed
615
616
617
618


	// PUBLISH THE CURRENT X,Y,Z, AND YAW (if required)
	if (shouldPublishCurrent_xyz_yaw)
619
	{
pragash1's avatar
pragash1 committed
620
		publish_current_xyz_yaw(request.ownCrazyflie.x,request.ownCrazyflie.y,request.ownCrazyflie.z,request.ownCrazyflie.yaw);
621
622
	}

pragash1's avatar
pragash1 committed
623
624
625
626
627
	// PUBLISH THE DEBUG MESSAGE (if required)
	if (shouldPublishDebugMessage)
	{
		construct_and_publish_debug_message(request,response);
	}
628

pragash1's avatar
pragash1 committed
629
630
631
	// RETURN "true" TO INDICATE THAT THE COMPUTATIONS WERE SUCCESSFUL
	return true;
}
mastefan's avatar
mastefan committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881




//	State Error Body
//	1)	x Error
//	2)	y Error
//	3)	z Error
//	4)	x dot Error
//	5)	y dot Error
//	6)	z dot Error
//	7)	Roll
//	8)	Pitch
//	9)	yaw
//	10)	Roll dot
//	11)	Pitch dot
//	12)	Yaw dot


// DroneX Controller
void calculateControlOutputDroneX(Controller::Request &request, Controller::Response &response){

	


	if(controller_mode == 0){
		// CONVERT THE CURRENT INERTIAL FRAME STATE ESTIMATE, INTO
		// THE BODY FRAME ERROR REQUIRED BY THE CONTROLLER
		// > Define a local array to fill in with the body frame error
		float current_bodyFrameError[12];
		// > Call the function to perform the conversion



		convert_stateInertial_to_bodyFrameError(current_stateInertialEstimate, m_setpoint_for_controller, current_bodyFrameError);

		integrator_XYZ(current_bodyFrameError);
		calculateControlOutput_viaLQRforRates(current_bodyFrameError,request,response);
	}else{


		

		// LQR for Angles

		// Read Mothership coordinates
		// x,y,z,yaw
		float ms_coordinates[4];
		/*ms_coordinates[0] = request.otherCrazyflies[0].x;
		ms_coordinates[1] = request.otherCrazyflies[0].y;
		ms_coordinates[2] = request.otherCrazyflies[0].z;
		ms_coordinates[3] = request.otherCrazyflies[0].yaw;*/

		/*ms_coordinates[0] = dronexSetpoint.x;
		ms_coordinates[1] = dronexSetpoint.y;
		ms_coordinates[2] = dronexSetpoint.z;
		ms_coordinates[3] = request.otherCrazyflies[0].yaw;*/

		ms_coordinates[0] = m_setpoint_for_controller[0];
		ms_coordinates[1] = m_setpoint_for_controller[1];
		ms_coordinates[2] = m_setpoint_for_controller[2];
		ms_coordinates[3] = request.otherCrazyflies[0].yaw;

		// Load Mothership velocity
		// x dot, y dot, z dot
		float ms_velocity[3];
		ms_velocity[0] = drone_X_vel[0];
		ms_velocity[1] = drone_X_vel[1];
		ms_velocity[2] = drone_X_vel[2];
		


		// CONVERT THE CURRENT INERTIAL FRAME STATE ESTIMATE, INTO
		// THE BODY FRAME ERROR REQUIRED BY THE CONTROLLER
		// > Define a local array to fill in with the body frame error
		float stateErrorBody[12];
		// > Call the function to perform the conversion
		convert_stateInertial_to_bodyFrameError(current_stateInertialEstimate, ms_coordinates, stateErrorBody);
		

		float rollAngle_forResponse = 0;
		float pitchAngle_forResponse = 0;
		float thrustAdjustment = 0;
		
		// TODO: Do not forget to implement the yawController
		float yawAngle_forResponse = 0;


		integrator_XYZ(stateErrorBody);

		// integrator

		// BODY FRAME Y CONTROLLER
		rollAngle_forResponse  -= gainIntegratorAngle[0] * integrator_sum_XYZ[1];
		// BODY FRAME X CONTROLLER
		pitchAngle_forResponse -= gainIntegratorAngle[1] * integrator_sum_XYZ[0];
		// > ALITUDE CONTROLLER (i.e., z-controller):
		thrustAdjustment       -= gainIntegratorAngle[2] * integrator_sum_XYZ[2];
		

		// Perform the "-Kx" LQR computation for the rates and thrust:
		for(int i = 0; i < 6; ++i){
			// BODY FRAME Y CONTROLLER
			rollAngle_forResponse -= 1.1*gainMatrixRollAngle[i] * stateErrorBody[i];
			// BODY FRAME X CONTROLLER
			pitchAngle_forResponse -= 1.1*gainMatrixPitchAngle[i] * stateErrorBody[i];
			// BODY FRAME X CONTROLLER
			//thrustAdjustment -= gainMatrixThrust_SixStateVector[i] * stateErrorBody[i];

		}

		
		//float droneXAngle = ;
		// Calculcate Roll and Pitch Baseline, which comes from the moving mothership
		float rollAngle_baseline = 1;
		float pitchAngle_baseline = 1;

		// TODO
		rollAngle_forResponse += rollAngle_baseline;
		pitchAngle_forResponse += pitchAngle_forResponse;


		// Calculate the Force Feedforward
		float F_in_newtons = (gravity * m_mass_total_grams)/(cos(rollAngle_forResponse)*cos(pitchAngle_forResponse)*1000.0);




		// LQR for Rates
		// Calculate the Roll and Pitch Angle error

		float AngleError[3] = {
			stateErrorBody[6] - rollAngle_forResponse,
			stateErrorBody[7] - pitchAngle_forResponse,
			stateErrorBody[8]
		};

		float rollRate_forResponse = 0;
		float pitchRate_forResponse = 0;
		float yawRate_forResponse = 0;
		for(int i = 0; i < 4; i++){
			rollRate_forResponse -= gainMatrixRollRatefromAngle[i] * AngleError[i];
			pitchRate_forResponse -= gainMatrixPitchRatefromAngle[i] * AngleError[i];
			yawRate_forResponse -= gainMatrixYawRatefromAngle[i] * AngleError[i];
		}

		/*for(int i = 0; i < 9; ++i){
			thrustAdjustment      -= gainMatrixThrust_NineStateVector[i] * stateErrorBody[i];
		}*/

		for(int i = 0; i < 6; ++i){
			thrustAdjustment      -= gainMatrixThrust_SixStateVector[i] * stateErrorBody[i];
		}


		//thrustAdjustment -= F;


		// UPDATE THE "RETURN" THE VARIABLE NAMED "response"

		// Put the computed rates and thrust into the "response" variable
		// > For roll, pitch, and yaw:
		response.controlOutput.roll  = rollRate_forResponse;
		response.controlOutput.pitch = pitchRate_forResponse;
		response.controlOutput.yaw   = yawRate_forResponse;
		// > For the thrust adjustment we must add the feed-forward thrust to counter-act gravity.
		// > NOTE: remember that the thrust is commanded per motor, so you sohuld
		//         consider whether the "thrustAdjustment" computed by your
		//         controller needed to be divided by 4 or not.
		thrustAdjustment = thrustAdjustment / 4.0;
		// > Compute the feed-forward force
		float feed_forward_thrust_per_motor = F_in_newtons / 4.0; //m_mass_total_grams * 9.81/(1000*4);
		// > Put in the per motor commands
		response.controlOutput.motorCmd1 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
		response.controlOutput.motorCmd2 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
		response.controlOutput.motorCmd3 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
		response.controlOutput.motorCmd4 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);


		// Specify that this controller is a rate controller
		// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_MOTOR;
		response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_RATE;
		// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_ANGLE;


		// An alternate debugging technique is to print out data directly to the
		// command line from which this node was launched.
		/*if (shouldDisplayDebugInfo)
		{
			// An example of "printing out" the data from the "request" argument to the
			// command line. This might be useful for debugging.
			ROS_INFO_STREAM("x-coordinate [m]: " << request.ownCrazyflie.x);
			ROS_INFO_STREAM("y-coordinate [m]: " << request.ownCrazyflie.y);
			ROS_INFO_STREAM("z-coordinate [m]: " << request.ownCrazyflie.z);
			ROS_INFO_STREAM("roll       [deg]: " << request.ownCrazyflie.roll);
			ROS_INFO_STREAM("pitch      [deg]: " << request.ownCrazyflie.pitch);
			ROS_INFO_STREAM("yaw        [deg]: " << request.ownCrazyflie.yaw);
			ROS_INFO_STREAM("Delta t      [s]: " << request.ownCrazyflie.acquiringTime);

			// An example of "printing out" the control actions computed.
			ROS_INFO_STREAM("thrustAdjustment = " << thrustAdjustment);
			ROS_INFO_STREAM("controlOutput.roll = " << response.controlOutput.roll);
			ROS_INFO_STREAM("controlOutput.pitch = " << response.controlOutput.pitch);
			ROS_INFO_STREAM("controlOutput.yaw = " << response.controlOutput.yaw);

			// An example of "printing out" the "thrust-to-command" conversion parameters.
			ROS_INFO_STREAM("motorPoly 0:" << motorPoly[0]);
			ROS_INFO_STREAM("motorPoly 0:" << motorPoly[1]);
			ROS_INFO_STREAM("motorPoly 0:" << motorPoly[2]);

			// An example of "printing out" the per motor 16-bit command computed.
			ROS_INFO_STREAM("controlOutput.cmd1 = " << response.controlOutput.motorCmd1);
			ROS_INFO_STREAM("controlOutput.cmd3 = " << response.controlOutput.motorCmd2);
			ROS_INFO_STREAM("controlOutput.cmd2 = " << response.controlOutput.motorCmd3);
			ROS_INFO_STREAM("controlOutput.cmd4 = " << response.controlOutput.motorCmd4);
		}*/


	}
	
	


}


























882

pragash1's avatar
pragash1 committed
883
884
885
886
887
888
889
890
891
892
893
894
// Set motors Output to 0
void motorsOFF(Controller::Response &response){
	response.controlOutput.motorCmd1 = 0;
	response.controlOutput.motorCmd2 = 0;
	response.controlOutput.motorCmd3 = 0;
	response.controlOutput.motorCmd4 = 0;

	// Specify that this controller is a rate controller
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_MOTOR;
	response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_RATE;
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_ANGLE;
}
895
896
897



mastefan's avatar
mastefan committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
// Estimate mothership velocity
void calculateDroneXVelocity(Controller::Request &request){

	prev_DroneX_pos[0]  = current_DroneX_pos[0];
	prev_DroneX_pos[1]  = current_DroneX_pos[1];
	prev_DroneX_pos[2]  = current_DroneX_pos[2];

	current_DroneX_pos[0] = request.otherCrazyflies[0].x;
	current_DroneX_pos[1] = request.otherCrazyflies[0].y;
	current_DroneX_pos[2] = request.otherCrazyflies[0].z;

	drone_X_vel[0] = (current_DroneX_pos[0] - prev_DroneX_pos[0])*m_vicon_frequency;
	drone_X_vel[1] = (current_DroneX_pos[1] - prev_DroneX_pos[1])*m_vicon_frequency;
	drone_X_vel[2] = (current_DroneX_pos[2] - prev_DroneX_pos[2])*m_vicon_frequency;

	//ROS_INFO_STREAM("Velocity: vx " << drone_X_vel[0] << ", vy " << drone_X_vel[1] << ", vz " << drone_X_vel[2]);

}






pragash1's avatar
pragash1 committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
//    ------------------------------------------------------------------------------
//    EEEEE   SSSS  TTTTT  III  M   M    A    TTTTT  III   OOO   N   N
//    E      S        T     I   MM MM   A A     T     I   O   O  NN  N
//    EEE     SSS     T     I   M M M  A   A    T     I   O   O  N N N
//    E          S    T     I   M   M  AAAAA    T     I   O   O  N  NN
//    EEEEE  SSSS     T    III  M   M  A   A    T    III   OOO   N   N
//    ------------------------------------------------------------------------------
void performEstimatorUpdate_forStateInterial(Controller::Request &request)
{

	// PUT THE CURRENT MEASURED DATA INTO THE CLASS VARIABLE
	// > for (x,y,z) position
	current_xzy_rpy_measurement[0] = request.ownCrazyflie.x;
	current_xzy_rpy_measurement[1] = request.ownCrazyflie.y;
	current_xzy_rpy_measurement[2] = request.ownCrazyflie.z;
	// > for (roll,pitch,yaw) angles
	current_xzy_rpy_measurement[3] = request.ownCrazyflie.roll;
	current_xzy_rpy_measurement[4] = request.ownCrazyflie.pitch;
	current_xzy_rpy_measurement[5] = request.ownCrazyflie.yaw;
941
942


pragash1's avatar
pragash1 committed
943
944
	// RUN THE FINITE DIFFERENCE ESTIMATOR
	performEstimatorUpdate_forStateInterial_viaFiniteDifference();
945
946


pragash1's avatar
pragash1 committed
947
948
	// RUN THE POINT MASS KALMAN FILTER ESTIMATOR
	performEstimatorUpdate_forStateInterial_viaPointMassKalmanFilter();
949
950


pragash1's avatar
pragash1 committed
951
952
	// FILLE IN THE STATE INERTIAL ESTIMATE TO BE USED FOR CONTROL
	switch (estimator_method)
953
	{
pragash1's avatar
pragash1 committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
		// Estimator based on finte differences
		case ESTIMATOR_METHOD_FINITE_DIFFERENCE:
		{
			// Transfer the estimate
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaFiniteDifference[i];
			}
			break;
		}
		// Estimator based on Point Mass Kalman Filter
		case ESTIMATOR_METHOD_POINT_MASS_PER_DIMENSION:
		{
			// Transfer the estimate
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaPointMassKalmanFilter[i];
			}
			break;
		}
		// Handle the exception
		default:
		{
			// Display that the "estimator_method" was not recognised
			ROS_INFO_STREAM("[DRONEX CONTROLLER] ERROR: in the 'calculateControlOutput' function of the 'DroneXControllerService': the 'estimator_method' is not recognised.");
			// Transfer the finite difference estimate by default
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaFiniteDifference[i];
			}
			break;
		}
986
987
988
	}


pragash1's avatar
pragash1 committed
989
990
991
992
993
994
995
996
997
998
999
1000
	// NOW THAT THE ESTIMATORS HAVE ALL BEEN RUN, PUT THE CURRENT
	// MEASURED DATA INTO THE CLASS VARIABLE FOR THE PREVIOUS
	// > for (x,y,z) position
	previous_xzy_rpy_measurement[0] = current_xzy_rpy_measurement[0];
	previous_xzy_rpy_measurement[1] = current_xzy_rpy_measurement[1];
	previous_xzy_rpy_measurement[2] = current_xzy_rpy_measurement[2];
	// > for (roll,pitch,yaw) angles
	previous_xzy_rpy_measurement[3] = current_xzy_rpy_measurement[3];
	previous_xzy_rpy_measurement[4] = current_xzy_rpy_measurement[4];
	previous_xzy_rpy_measurement[5] = current_xzy_rpy_measurement[5];
}