DroneXControllerService.cpp 64 KB
Newer Older
1
2
3
//    Copyright (C) 2017, ETH Zurich, D-ITET, Paul Beuchat, Angel Romero, Cyrill Burgener, Marco Mueller, Philipp Friedli
//
//    This file is part of D-FaLL-System.
pragash1's avatar
pragash1 committed
4
//
5
6
7
8
//    D-FaLL-System is free software: you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation, either version 3 of the License, or
//    (at your option) any later version.
pragash1's avatar
pragash1 committed
9
//
10
11
12
13
//    D-FaLL-System is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
pragash1's avatar
pragash1 committed
14
//
15
16
//    You should have received a copy of the GNU General Public License
//    along with D-FaLL-System.  If not, see <http://www.gnu.org/licenses/>.
pragash1's avatar
pragash1 committed
17
//
18
19
20
21
22
23
24
25
26
27
//
//    ----------------------------------------------------------------------------------
//    DDDD        FFFFF        L     L           SSSS  Y   Y   SSSS  TTTTT  EEEEE  M   M
//    D   D       F      aaa   L     L          S       Y Y   S        T    E      MM MM
//    D   D  ---  FFFF  a   a  L     L     ---   SSS     Y     SSS     T    EEE    M M M
//    D   D       F     a  aa  L     L              S    Y        S    T    E      M   M
//    DDDD        F      aa a  LLLL  LLLL       SSSS     Y    SSSS     T    EEEEE  M   M
//
//
//    DESCRIPTION:
pragash1's avatar
pragash1 committed
28
//    Place for students to implement their controller
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
//
//    ----------------------------------------------------------------------------------





// INCLUDE THE HEADER
#include "nodes/DroneXControllerService.h"





//    ----------------------------------------------------------------------------------
//    FFFFF  U   U  N   N   CCCC  TTTTT  III   OOO   N   N
//    F      U   U  NN  N  C        T     I   O   O  NN  N
//    FFF    U   U  N N N  C        T     I   O   O  N N N
//    F      U   U  N  NN  C        T     I   O   O  N  NN
//    F       UUU   N   N   CCCC    T    III   OOO   N   N
//
//    III M   M PPPP  L     EEEEE M   M EEEEE N   N TTTTT   A   TTTTT III  OOO  N   N
//     I  MM MM P   P L     E     MM MM E     NN  N   T    A A    T    I  O   O NN  N
//     I  M M M PPPP  L     EEE   M M M EEE   N N N   T   A   A   T    I  O   O N N N
//     I  M   M P     L     E     M   M E     N  NN   T   AAAAA   T    I  O   O N  NN
//    III M   M P     LLLLL EEEEE M   M EEEEE N   N   T   A   A   T   III  OOO  N   N
//    ----------------------------------------------------------------------------------
pragash1's avatar
pragash1 committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193




// REMINDER OF THE NAME OF USEFUL CLASS VARIABLE
// // > Mass of the Crazyflie quad-rotor, in [grams]
// float m_mass_CF_grams;
// // > Mass of the letters to be lifted, in [grams]
// float m_mass_E_grams;
// float m_mass_T_grams;
// float m_mass_H_grams;
// // > Total mass of the Crazyflie plus whatever it is carrying, in [grams]
// float m_mass_total_grams;
// // Thickness of the object at pick-up and put-down, in [meters]
// // > This should also account for extra height due to
// //   the surface where the object is
// float m_thickness_of_object_at_pickup;
// float m_thickness_of_object_at_putdown;
// // (x,y) coordinates of the pickup location
// std::vector<float> m_pickup_coordinates_xy(2);
// // (x,y) coordinates of the drop off location
// std::vector<float> m_dropoff_coordinates_xy_for_E(2);
// std::vector<float> m_dropoff_coordinates_xy_for_T(2);
// std::vector<float> m_dropoff_coordinates_xy_for_H(2);
// // Length of the string from the Crazyflie
// // to the end of the DroneX, in [meters]
// float m_dronex_string_length;
// // > The setpoints for (x,y,z) position and yaw angle, in that order
// float m_setpoint[4] = {0.0,0.0,0.4,0.0};
// float m_setpoint_for_controller[4] = {0.0,0.0,0.4,0.0};
// // > Small adjustments to the x-y setpoint
// float m_xAdjustment = 0.0f;
// float m_yAdjustment = 0.0f;
// // Boolean for whether to limit rate of change of the setpoint
// bool m_shouldSmoothSetpointChanges = true;
// // Max setpoint change per second
// float m_max_setpoint_change_per_second_horizontal;
// float m_max_setpoint_change_per_second_vertical;
// float m_max_setpoint_change_per_second_yaw_degrees;
// float m_max_setpoint_change_per_second_yaw_radians;
// // Frequency at which the controller is running
// float m_vicon_frequency;


// A FEW EXTRA COMMENTS ABOUT THE MOST IMPORTANT VARIABLES

// Variable name:    m_setpoint
// Description:
// This is a float array of length 4. It specifies a location
// in space where you want the drone to be. The 4 element are:
// >> m_setpoint[0]   The x-poistion in [meters]
// >> m_setpoint[1]   The y-poistion in [meters]
// >> m_setpoint[2]   The z-poistion in [meters]
// >> m_setpoint[3]   The yaw heading angle in [radians]


// Variable name:    m_setpoint_for_controller
// Description:
// Similar to the variable "m_setpoint" this is also float array
// of length 4 that specifies an (x,y,z,yaw) location. The
// difference it that this variable specifies the location where
// the low-level controller is guiding the drone to be.
// HINT: to make changes the "m_setpoint" variable, you can edit
// the function named "perControlCycleOperations" so that the
// "m_setpoint_for_controller" changes by a maximum amount at
// each cycle of the contoller



// THIS FUNCTION IS CALLED AT "m_vicon_frequency" HERTZ.
// IT CAN BE USED TO ADJUST THINGS IN "REAL TIME".
// For example, the equation:
// >> m_max_setpoint_change_per_second_horizontal / m_vicon_frequency
// will convert the "change per second" to a "change per cycle".

void perControlCycleOperations()
{
	if (m_shouldSmoothSetpointChanges)
	{
		for(int i = 0; i < 4; ++i)
		{
			float max_for_this_coordinate;
			// FILLE IN THE STATE INERTIAL ESTIMATE TO BE USED FOR CONTROL
			switch (i)
			{
				case 0:
					max_for_this_coordinate = m_max_setpoint_change_per_second_horizontal / m_vicon_frequency;
					break;
				case 1:
					max_for_this_coordinate = m_max_setpoint_change_per_second_horizontal / m_vicon_frequency;
					break;
				case 2:
					max_for_this_coordinate = m_max_setpoint_change_per_second_vertical / m_vicon_frequency;
					break;
				case 3:
					max_for_this_coordinate = m_max_setpoint_change_per_second_yaw_radians / m_vicon_frequency;
					break;
				// Handle the exception
				default:
					max_for_this_coordinate = 0.0f;
					break;
			}

			// Compute the difference in setpoint
			float setpoint_difference = m_setpoint[i] - m_setpoint_for_controller[i];

			// Clip the difference to the maximum
			if (setpoint_difference > max_for_this_coordinate)
			{
				setpoint_difference = max_for_this_coordinate;
			}
			else if (setpoint_difference < -max_for_this_coordinate)
			{
				setpoint_difference = -max_for_this_coordinate;
			}

			// Update the setpoint of the controller
			m_setpoint_for_controller[i] += setpoint_difference;
		}

	}
	else
	{
		m_setpoint_for_controller[0] = m_setpoint[0];
		m_setpoint_for_controller[1] = m_setpoint[1];
		m_setpoint_for_controller[2] = m_setpoint[2];
		m_setpoint_for_controller[3] = m_setpoint[3];
	}
}








void buttonPressed_take_off(){
pragash1's avatar
pragash1 committed
194

195
	//if(flying_state == DRONEX_STATE_GROUND || flying_state == DRONEX_STATE_ON_MOTHERSHIP){
pragash1's avatar
pragash1 committed
196
197
		ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Taking off...");
		flying_state = DRONEX_STATE_TAKING_OFF;
198
199
200
	//}else{
	//	ROS_ERROR("Cannot change to DRONEX_STATE_TAKING_OFF");
	//}
pragash1's avatar
pragash1 committed
201
202
203
}

void buttonPressed_land(){
204
	//if(flying_state == DRONEX_STATE_HOVER){
mastefan's avatar
mastefan committed
205
206
207
208
		ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Start flight-sequence LA...");
		// OLD:flying_state = DRONEX_STATE_LAND_ON_MOTHERSHIP;
		// NEW: 
		flightSequence = 1;
pragash1's avatar
pragash1 committed
209
210
}

pragash1's avatar
pragash1 committed
211
212
213
214
215
void buttonPressed_abort(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Abort Mission!");
	flying_state = DRONEX_STATE_LAND_ON_GROUND;
}

216
217
void buttonPressed_integrator_on(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Turn ON integrator");
maruggv's avatar
maruggv committed
218
	integratorFlag = DRONEX_INTEGRATOR_ON;
219
220
221
222
}

void buttonPressed_integrator_off(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] Turn OFF integrator");
maruggv's avatar
maruggv committed
223
	integratorFlag = DRONEX_INTEGRATOR_OFF;
224
225
226
227
}

void buttonPressed_integrator_reset(){
	ROS_INFO("[DRONEX CONTROLLER-DroneXControllerService] RESET integrator to zero");
maruggv's avatar
maruggv committed
228
	integratorFlag = DRONEX_INTEGRATOR_RESET;
229
230
}

pragash1's avatar
pragash1 committed
231
232


233
234
235
236
237
238





//    ------------------------------------------------------------------------------
pragash1's avatar
pragash1 committed
239
//     OOO   U   U  TTTTT  EEEEE  RRRR
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//    O   O  U   U    T    E      R   R
//    O   O  U   U    T    EEE    RRRR
//    O   O  U   U    T    E      R  R
//     OOO    UUU     T    EEEEE  R   R
//
//     CCCC   OOO   N   N  TTTTT  RRRR    OOO   L           L       OOO    OOO   PPPP
//    C      O   O  NN  N    T    R   R  O   O  L           L      O   O  O   O  P   P
//    C      O   O  N N N    T    RRRR   O   O  L           L      O   O  O   O  PPPP
//    C      O   O  N  NN    T    R  R   O   O  L           L      O   O  O   O  P
//     CCCC   OOO   N   N    T    R   R   OOO   LLLLL       LLLLL   OOO    OOO   P
//    ----------------------------------------------------------------------------------

// This function is the callback that is linked to the "DroneXController" service that
// is advertised in the main function. This must have arguments that match the
// "input-output" behaviour defined in the "Controller.srv" file (located in the "srv"
// folder)
//
// The arument "request" is a structure provided to this service with the following two
// properties:
// request.ownCrazyflie
// This property is itself a structure of type "CrazyflieData",  which is defined in the
// file "CrazyflieData.msg", and has the following properties
// string crazyflieName
//     float64 x                         The x position of the Crazyflie [metres]
//     float64 y                         The y position of the Crazyflie [metres]
//     float64 z                         The z position of the Crazyflie [metres]
//     float64 roll                      The roll component of the intrinsic Euler angles [radians]
//     float64 pitch                     The pitch component of the intrinsic Euler angles [radians]
//     float64 yaw                       The yaw component of the intrinsic Euler angles [radians]
//     float64 acquiringTime #delta t    The time elapsed since the previous "CrazyflieData" was received [seconds]
//     bool occluded                     A boolean indicted whether the Crazyflie for visible at the time of this measurement
// The values in these properties are directly the measurement taken by the Vicon
// motion capture system of the Crazyflie that is to be controlled by this service
//
// request.otherCrazyflies
// This property is an array of "CrazyflieData" structures, what allows access to the
// Vicon measurements of other Crazyflies.
//
// The argument "response" is a structure that is expected to be filled in by this
// service by this function, it has only the following property
// response.ControlCommand
// This property is iteself a structure of type "ControlCommand", which is defined in
// the file "ControlCommand.msg", and has the following properties:
//     float32 roll                      The command sent to the Crazyflie for the body frame x-axis
//     float32 pitch                     The command sent to the Crazyflie for the body frame y-axis
//     float32 yaw                       The command sent to the Crazyflie for the body frame z-axis
//     uint16 motorCmd1                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd2                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd3                  The command sent to the Crazyflie for motor 1
//     uint16 motorCmd4                  The command sent to the Crazyflie for motor 1
//     uint8 onboardControllerType       The flag sent to the Crazyflie for indicating how to implement the command
pragash1's avatar
pragash1 committed
291
//
292
293
// IMPORTANT NOTES FOR "onboardControllerType"  AND AXIS CONVENTIONS
// > The allowed values for "onboardControllerType" are in the "Defines" section at the
pragash1's avatar
pragash1 committed
294
295
296
297
298
//   top of this file, they are:
//   CF_COMMAND_TYPE_MOTOR
//   CF_COMMAND_TYPE_RATE
//   CF_COMMAND_TYPE_ANGLE.
// > With CF_COMMAND_TYPE_RATE the ".roll", ".ptich", and ".yaw" properties of "response.ControlCommand"
299
300
//   specify the angular rate in [radians/second] that will be requested from the
//   PID controllers running in the Crazyflie 2.0 firmware.
pragash1's avatar
pragash1 committed
301
// > With CF_COMMAND_TYPE_RATE the ".motorCmd1" to ".motorCmd4" properties of "response.ControlCommand"
302
303
304
//   are the baseline motor commands requested from the Crazyflie, with the adjustment
//   for body rates being added on top of this in the firmware (i.e., as per the code
//   of the "distribute_power" function provided in exercise sheet 2).
pragash1's avatar
pragash1 committed
305
// > With CF_COMMAND_TYPE_RATE the axis convention for the roll, pitch, and yaw body rates returned
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//   in "response.ControlCommand" should use right-hand coordinate axes with x-forward
//   and z-upwards (i.e., the positive z-axis is aligned with the direction of positive
//   thrust). To assist, teh following is an ASCII art of this convention:
//
// ASCII ART OF THE CRAZYFLIE 2.0 LAYOUT
//
//  > This is a top view,
//  > M1 to M4 stand for Motor 1 to Motor 4,
//  > "CW"  indicates that the motor rotates Clockwise,
//  > "CCW" indicates that the motor rotates Counter-Clockwise,
//  > By right-hand axis convention, the positive z-direction points our of the screen,
//  > This being a "top view" means tha the direction of positive thrust produced
//    by the propellers is also out of the screen.
//
//        ____                         ____
//       /    \                       /    \
//  (CW) | M4 |           x           | M1 | (CCW)
//       \____/\          ^          /\____/
//            \ \         |         / /
//             \ \        |        / /
//              \ \______ | ______/ /
//               \        |        /
//                |       |       |
//        y <-------------o       |
//                |               |
//               / _______________ \
//              / /               \ \
//             / /                 \ \
//        ____/ /                   \ \____
//       /    \/                     \/    \
// (CCW) | M3 |                       | M2 | (CW)
//       \____/                       \____/
//
//
//
// This function WILL NEED TO BE edited for successful completion of the PPS exercise
bool calculateControlOutput(Controller::Request &request, Controller::Response &response)
{

pragash1's avatar
pragash1 committed
345
346
347
	// Keep track of time
	m_time_ticks++;
	m_time_seconds = float(m_time_ticks) / m_vicon_frequency;
348

349
350
351
352
353
354
355
356

	switch(flying_state){
		case DRONEX_STATE_APPROACH:
			{
				ROS_INFO("DRONEX_STATE_APPROACH");
			dronexSetpoint.x = request.otherCrazyflies[0].x;
			dronexSetpoint.y = request.otherCrazyflies[0].y;
			dronexSetpoint.z = request.otherCrazyflies[0].z + 0.2;
357
			//setpointCallback(dronexSetpoint);
pragash1's avatar
pragash1 committed
358

359
360
361
		}
			break;
		case DRONEX_STATE_GROUND:
362
			//{
363
				ROS_INFO("DRONEX_STATE_GROUND");
364
365
366
			/*	std_msgs::Int32 flying_state_msg;
    			flying_state_msg.data = STATE_MOTORS_OFF;
				flyingStatePublisher.publish(flying_state_msg);
367
			return true;
368
			}*/
369
			break;
370

pragash1's avatar
pragash1 committed
371
		case DRONEX_STATE_LAND_ON_GROUND:
372
			{
pragash1's avatar
pragash1 committed
373
374
				//ROS_INFO_STREAM("DRONEX_STATE_LAND_ON_GROUND: Crazyflie z coordinate " << request.ownCrazyflie.z);
				//ROS_INFO_STREAM("DRONEX_STATE_LAND_ON_GROUND: Mothership z coordinate " << request.otherCrazyflies[0].z);
375
376
377
378

					dronexSetpoint.x = request.otherCrazyflies[0].x;	//set setpoint to droneX x y and z coordinates
					dronexSetpoint.y = request.otherCrazyflies[0].y;
					dronexSetpoint.z = request.otherCrazyflies[0].z+0.05;
pragash1's avatar
pragash1 committed
379

380
			/*if(request.ownCrazyflie.z < request.otherCrazyflies[0].z+0.25){ // >0.1
pragash1's avatar
pragash1 committed
381

382
383
				std_msgs::Int32 flying_state_msg;
    			flying_state_msg.data = STATE_MOTORS_OFF;
384
385
386
387
388
389

				//flyingStatePublisher.publish(flying_state_msg);

				ROS_INFO_STREAM("DRONEX_MOTORS_OFF..." << request.ownCrazyflie.z - request.otherCrazyflies[0].z);
				return true;
			}*/
pragash1's avatar
pragash1 committed
390
			/*
391
392
393
394
395
396
			}else{
				//if(dronexSetpoint.z>=request.otherCrazyflies[0].z){
					float down_per_cycle = 0.003;
					if(dronexSetpoint.z < request.otherCrazyflies[0].z+0.5){
						down_per_cycle = 0.0005;
					}
pragash1's avatar
pragash1 committed
397

398
399
400
401
402
403
					dronexSetpoint.z -= down_per_cycle;
				ROS_INFO_STREAM("DRONEX_L: z" << dronexSetpoint.z);
				//}else{

				//}
			}*/
404

pragash1's avatar
pragash1 committed
405
406


407
408
			}
			break;
mastefan's avatar
mastefan committed
409

410
411
412
		case DRONEX_STATE_TAKING_OFF:
			{
			ROS_INFO_STREAM("DRONEX_STATE_TAKING_OFF");
pragash1's avatar
pragash1 committed
413

mastefan's avatar
mastefan committed
414
415
416
417
418
			if(!savedStartCoordinates)
			{
				startCoordinateY = request.ownCrazyflie.x; // Nöd sicher öbs das brucht. Idee: Afangscoordinate abspeichere zum in Hover state z ende.
				startCoordinateX = request.ownCrazyflie.y;
				startCoordinateZ = request.ownCrazyflie.z;
419

mastefan's avatar
mastefan committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
				

				savedStartCoordinates = true;
				//setpointCallback(dronexSetpoint);
				}
			}

			dronexSetpoint.x = startCoordinateX;
				dronexSetpoint.y = startCoordinateY;
				dronexSetpoint.z = startCoordinateZ + 0.6;
				

			if((request.ownCrazyflie.z > startCoordinateZ + 0.6 - eps_height) || (request.ownCrazyflie.z < startCoordinateZ + 0.6 + eps_height)){
				tookOffFlag == true;
				// -> flyingState: Hover
			}
436
437

			break;
mastefan's avatar
mastefan committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
			
		} // END switch case

		
	

	if (flightSequence == 1){
			flying_state = DRONEX_TAKE_OFF;
			//ROS_INFO_STREAM("Flight sequence: Landing on mothership");
			if(tookOffFlag){
				flying_state = DRONEX_STATE_APPROACH;

				if(approachedFlag){
					flying_state = DRONEX_LAND;
				}

			}

456
	}
457
458
459

	setpointCallback(dronexSetpoint);

460
461
462
	/*dronexSetpoint.x = request.otherCrazyflies[0].x;
	dronexSetpoint.y = request.otherCrazyflies[0].y;
	dronexSetpoint.z = request.otherCrazyflies[0].z + 0.3*/
463

464
	//setpointCallback(dronexSetpoint);
pragash1's avatar
pragash1 committed
465
	// CALL THE FUNCTION FOR PER CYLCE OPERATIONS
pragash1's avatar
pragash1 committed
466

467
		perControlCycleOperations();
pragash1's avatar
pragash1 committed
468

pragash1's avatar
pragash1 committed
469
470
471
472
	// THIS IS THE START OF THE "OUTER" CONTROL LOOP
	// > i.e., this is the control loop run on this laptop
	// > this function is called at the frequency specified
	// > this function performs all estimation and control
473
474


pragash1's avatar
pragash1 committed
475
476
477
478
479
	// PERFORM THE ESTIMATOR UPDATE FOR THE INTERIAL FRAME STATE
	// > After this function is complete the class variable
	//   "current_stateInertialEstimate" is updated and ready
	//   to be used for subsequent controller copmutations
	performEstimatorUpdate_forStateInterial(request);
480
481


pragash1's avatar
pragash1 committed
482
483
484
485
486
487
	// CONVERT THE CURRENT INERTIAL FRAME STATE ESTIMATE, INTO
	// THE BODY FRAME ERROR REQUIRED BY THE CONTROLLER
	// > Define a local array to fill in with the body frame error
	float current_bodyFrameError[12];
	// > Call the function to perform the conversion
	convert_stateInertial_to_bodyFrameError(current_stateInertialEstimate,m_setpoint_for_controller,current_bodyFrameError);
488
489
490



pragash1's avatar
pragash1 committed
491
492
	// CARRY OUT THE CONTROLLER COMPUTATIONS
	// Call the function that performs the control computations for this mode
493

pragash1's avatar
pragash1 committed
494
	if((flying_state == DRONEX_STATE_LAND_ON_GROUND && (request.ownCrazyflie.z < 0.1 + request.otherCrazyflies[0].z)) || flying_state == DRONEX_STATE_GROUND){
495

pragash1's avatar
pragash1 committed
496
		motorsOFF(response);
497
498

	}else{
pragash1's avatar
pragash1 committed
499
500
501
502

		calculateControlOutput_viaLQRforRates(current_bodyFrameError,request,response);

	}
pragash1's avatar
pragash1 committed
503
504
505
506


	// PUBLISH THE CURRENT X,Y,Z, AND YAW (if required)
	if (shouldPublishCurrent_xyz_yaw)
507
	{
pragash1's avatar
pragash1 committed
508
		publish_current_xyz_yaw(request.ownCrazyflie.x,request.ownCrazyflie.y,request.ownCrazyflie.z,request.ownCrazyflie.yaw);
509
510
	}

pragash1's avatar
pragash1 committed
511
512
513
514
515
	// PUBLISH THE DEBUG MESSAGE (if required)
	if (shouldPublishDebugMessage)
	{
		construct_and_publish_debug_message(request,response);
	}
516

pragash1's avatar
pragash1 committed
517
518
519
	// RETURN "true" TO INDICATE THAT THE COMPUTATIONS WERE SUCCESSFUL
	return true;
}
520

pragash1's avatar
pragash1 committed
521
522
523
524
525
526
527
528
529
530
531
532
// Set motors Output to 0
void motorsOFF(Controller::Response &response){
	response.controlOutput.motorCmd1 = 0;
	response.controlOutput.motorCmd2 = 0;
	response.controlOutput.motorCmd3 = 0;
	response.controlOutput.motorCmd4 = 0;

	// Specify that this controller is a rate controller
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_MOTOR;
	response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_RATE;
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_ANGLE;
}
533
534
535



pragash1's avatar
pragash1 committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
//    ------------------------------------------------------------------------------
//    EEEEE   SSSS  TTTTT  III  M   M    A    TTTTT  III   OOO   N   N
//    E      S        T     I   MM MM   A A     T     I   O   O  NN  N
//    EEE     SSS     T     I   M M M  A   A    T     I   O   O  N N N
//    E          S    T     I   M   M  AAAAA    T     I   O   O  N  NN
//    EEEEE  SSSS     T    III  M   M  A   A    T    III   OOO   N   N
//    ------------------------------------------------------------------------------
void performEstimatorUpdate_forStateInterial(Controller::Request &request)
{

	// PUT THE CURRENT MEASURED DATA INTO THE CLASS VARIABLE
	// > for (x,y,z) position
	current_xzy_rpy_measurement[0] = request.ownCrazyflie.x;
	current_xzy_rpy_measurement[1] = request.ownCrazyflie.y;
	current_xzy_rpy_measurement[2] = request.ownCrazyflie.z;
	// > for (roll,pitch,yaw) angles
	current_xzy_rpy_measurement[3] = request.ownCrazyflie.roll;
	current_xzy_rpy_measurement[4] = request.ownCrazyflie.pitch;
	current_xzy_rpy_measurement[5] = request.ownCrazyflie.yaw;
555
556


pragash1's avatar
pragash1 committed
557
558
	// RUN THE FINITE DIFFERENCE ESTIMATOR
	performEstimatorUpdate_forStateInterial_viaFiniteDifference();
559
560


pragash1's avatar
pragash1 committed
561
562
	// RUN THE POINT MASS KALMAN FILTER ESTIMATOR
	performEstimatorUpdate_forStateInterial_viaPointMassKalmanFilter();
563
564


pragash1's avatar
pragash1 committed
565
566
	// FILLE IN THE STATE INERTIAL ESTIMATE TO BE USED FOR CONTROL
	switch (estimator_method)
567
	{
pragash1's avatar
pragash1 committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
		// Estimator based on finte differences
		case ESTIMATOR_METHOD_FINITE_DIFFERENCE:
		{
			// Transfer the estimate
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaFiniteDifference[i];
			}
			break;
		}
		// Estimator based on Point Mass Kalman Filter
		case ESTIMATOR_METHOD_POINT_MASS_PER_DIMENSION:
		{
			// Transfer the estimate
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaPointMassKalmanFilter[i];
			}
			break;
		}
		// Handle the exception
		default:
		{
			// Display that the "estimator_method" was not recognised
			ROS_INFO_STREAM("[DRONEX CONTROLLER] ERROR: in the 'calculateControlOutput' function of the 'DroneXControllerService': the 'estimator_method' is not recognised.");
			// Transfer the finite difference estimate by default
			for(int i = 0; i < 12; ++i)
			{
				current_stateInertialEstimate[i]  = stateInterialEstimate_viaFiniteDifference[i];
			}
			break;
		}
600
601
602
	}


pragash1's avatar
pragash1 committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
	// NOW THAT THE ESTIMATORS HAVE ALL BEEN RUN, PUT THE CURRENT
	// MEASURED DATA INTO THE CLASS VARIABLE FOR THE PREVIOUS
	// > for (x,y,z) position
	previous_xzy_rpy_measurement[0] = current_xzy_rpy_measurement[0];
	previous_xzy_rpy_measurement[1] = current_xzy_rpy_measurement[1];
	previous_xzy_rpy_measurement[2] = current_xzy_rpy_measurement[2];
	// > for (roll,pitch,yaw) angles
	previous_xzy_rpy_measurement[3] = current_xzy_rpy_measurement[3];
	previous_xzy_rpy_measurement[4] = current_xzy_rpy_measurement[4];
	previous_xzy_rpy_measurement[5] = current_xzy_rpy_measurement[5];
}



void performEstimatorUpdate_forStateInterial_viaFiniteDifference()
{
	// PUT IN THE CURRENT MEASUREMENT DIRECTLY
	// > for (x,y,z) position
	stateInterialEstimate_viaFiniteDifference[0]  = current_xzy_rpy_measurement[0];
	stateInterialEstimate_viaFiniteDifference[1]  = current_xzy_rpy_measurement[1];
	stateInterialEstimate_viaFiniteDifference[2]  = current_xzy_rpy_measurement[2];
	// > for (roll,pitch,yaw) angles
	stateInterialEstimate_viaFiniteDifference[6]  = current_xzy_rpy_measurement[3];
	stateInterialEstimate_viaFiniteDifference[7]  = current_xzy_rpy_measurement[4];
	stateInterialEstimate_viaFiniteDifference[8]  = current_xzy_rpy_measurement[5];

	// COMPUTE THE VELOCITIES VIA FINITE DIFFERENCE
	// > for (x,y,z) velocities
	stateInterialEstimate_viaFiniteDifference[3]  = (current_xzy_rpy_measurement[0] - previous_xzy_rpy_measurement[0]) * estimator_frequency;
	stateInterialEstimate_viaFiniteDifference[4]  = (current_xzy_rpy_measurement[1] - previous_xzy_rpy_measurement[1]) * estimator_frequency;
	stateInterialEstimate_viaFiniteDifference[5]  = (current_xzy_rpy_measurement[2] - previous_xzy_rpy_measurement[2]) * estimator_frequency;
	// > for (roll,pitch,yaw) velocities
	stateInterialEstimate_viaFiniteDifference[9]  = (current_xzy_rpy_measurement[3] - previous_xzy_rpy_measurement[3]) * estimator_frequency;
	stateInterialEstimate_viaFiniteDifference[10] = (current_xzy_rpy_measurement[4] - previous_xzy_rpy_measurement[4]) * estimator_frequency;
	stateInterialEstimate_viaFiniteDifference[11] = (current_xzy_rpy_measurement[5] - previous_xzy_rpy_measurement[5]) * estimator_frequency;
}



void performEstimatorUpdate_forStateInterial_viaPointMassKalmanFilter()
{
	// PERFORM THE KALMAN FILTER UPDATE STEP
	// > First take a copy of the estimator state
	float temp_PMKFstate[12];
	for(int i = 0; i < 12; ++i)
648
	{
pragash1's avatar
pragash1 committed
649
		temp_PMKFstate[i]  = stateInterialEstimate_viaPointMassKalmanFilter[i];
650
	}
pragash1's avatar
pragash1 committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
	// > Now perform update for:
	// > x position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[0] = PMKF_Ahat_row1_for_positions[0]*temp_PMKFstate[0] + PMKF_Ahat_row1_for_positions[1]*temp_PMKFstate[3] + PMKF_Kinf_for_positions[0]*current_xzy_rpy_measurement[0];
	stateInterialEstimate_viaPointMassKalmanFilter[3] = PMKF_Ahat_row2_for_positions[0]*temp_PMKFstate[0] + PMKF_Ahat_row2_for_positions[1]*temp_PMKFstate[3] + PMKF_Kinf_for_positions[1]*current_xzy_rpy_measurement[0];
	// > y position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[1] = PMKF_Ahat_row1_for_positions[0]*temp_PMKFstate[1] + PMKF_Ahat_row1_for_positions[1]*temp_PMKFstate[4] + PMKF_Kinf_for_positions[0]*current_xzy_rpy_measurement[1];
	stateInterialEstimate_viaPointMassKalmanFilter[4] = PMKF_Ahat_row2_for_positions[0]*temp_PMKFstate[1] + PMKF_Ahat_row2_for_positions[1]*temp_PMKFstate[4] + PMKF_Kinf_for_positions[1]*current_xzy_rpy_measurement[1];
	// > z position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[2] = PMKF_Ahat_row1_for_positions[0]*temp_PMKFstate[2] + PMKF_Ahat_row1_for_positions[1]*temp_PMKFstate[5] + PMKF_Kinf_for_positions[0]*current_xzy_rpy_measurement[2];
	stateInterialEstimate_viaPointMassKalmanFilter[5] = PMKF_Ahat_row2_for_positions[0]*temp_PMKFstate[2] + PMKF_Ahat_row2_for_positions[1]*temp_PMKFstate[5] + PMKF_Kinf_for_positions[1]*current_xzy_rpy_measurement[2];

	// > roll  position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[6]  = PMKF_Ahat_row1_for_angles[0]*temp_PMKFstate[6] + PMKF_Ahat_row1_for_angles[1]*temp_PMKFstate[9]  + PMKF_Kinf_for_angles[0]*current_xzy_rpy_measurement[3];
	stateInterialEstimate_viaPointMassKalmanFilter[9]  = PMKF_Ahat_row2_for_angles[0]*temp_PMKFstate[6] + PMKF_Ahat_row2_for_angles[1]*temp_PMKFstate[9]  + PMKF_Kinf_for_angles[1]*current_xzy_rpy_measurement[3];
	// > pitch position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[7]  = PMKF_Ahat_row1_for_angles[0]*temp_PMKFstate[7] + PMKF_Ahat_row1_for_angles[1]*temp_PMKFstate[10] + PMKF_Kinf_for_angles[0]*current_xzy_rpy_measurement[4];
	stateInterialEstimate_viaPointMassKalmanFilter[10] = PMKF_Ahat_row2_for_angles[0]*temp_PMKFstate[7] + PMKF_Ahat_row2_for_angles[1]*temp_PMKFstate[10] + PMKF_Kinf_for_angles[1]*current_xzy_rpy_measurement[4];
	// > yaw   position and velocity:
	stateInterialEstimate_viaPointMassKalmanFilter[8]  = PMKF_Ahat_row1_for_angles[0]*temp_PMKFstate[8] + PMKF_Ahat_row1_for_angles[1]*temp_PMKFstate[11] + PMKF_Kinf_for_angles[0]*current_xzy_rpy_measurement[5];
	stateInterialEstimate_viaPointMassKalmanFilter[11] = PMKF_Ahat_row2_for_angles[0]*temp_PMKFstate[8] + PMKF_Ahat_row2_for_angles[1]*temp_PMKFstate[11] + PMKF_Kinf_for_angles[1]*current_xzy_rpy_measurement[5];
}
672
673
674
675
676





pragash1's avatar
pragash1 committed
677
678
679
680
681
682
683
//    ----------------------------------------------------------------------------------
//    L       QQQ   RRRR
//    L      Q   Q  R   R
//    L      Q   Q  RRRR
//    L      Q  Q   R  R
//    LLLLL   QQ Q  R   R
//    ----------------------------------------------------------------------------------
684

pragash1's avatar
pragash1 committed
685
686
687
688
689
690
691
692
693
694
void calculateControlOutput_viaLQRforRates(float stateErrorBody[12], Controller::Request &request, Controller::Response &response)
{
	// PERFORM THE "u=Kx" LQR CONTROLLER COMPUTATION

	// Instantiate the local variables for the following:
	// > body frame roll rate,
	// > body frame pitch rate,
	// > body frame yaw rate,
	// > total thrust adjustment.
	// These will be requested from the Crazyflie's on-baord "inner-loop" controller
695
	float rollRate_forResponse = 0;
pragash1's avatar
pragash1 committed
696
697
698
	float pitchRate_forResponse = 0;
	float yawRate_forResponse = 0;
	float thrustAdjustment = 0;
699

700
701

	//integrator for x,y,z
maruggv's avatar
maruggv committed
702
	if(integratorFlag == DRONEX_INTEGRATOR_ON)
703
	{
mastefan's avatar
mastefan committed
704
		ROS_INFO_STREAM("DRONEX_INTEGRATOR_ON");
705
706
		for(int i=0; i < 3; i++)
		{
maruggv's avatar
maruggv committed
707
			integrator_var[i] += stateErrorBody[i]*(1.0/control_frequency);
708
709
710
		}
	}

maruggv's avatar
maruggv committed
711
	if(integratorFlag == DRONEX_INTEGRATOR_RESET)
712
713
714
715
716
717
718
719
720
721
722
723
	{
		for(int i=0; i < 3; i++)
		{
			integrator_var[i] = 0;
		}
	}

	for(int i=0; i < 3; i++)
	{
		stateErrorBody[i] += integrator_var[i] * gainIntegrator[i];
	}

pragash1's avatar
pragash1 committed
724
	// Perform the "-Kx" LQR computation for the rates and thrust:
725
726
	for(int i = 0; i < 9; ++i)
	{
pragash1's avatar
pragash1 committed
727
728
729
730
731
732
733
734
		// BODY FRAME Y CONTROLLER
		rollRate_forResponse  -= gainMatrixRollRate[i] * stateErrorBody[i];
		// BODY FRAME X CONTROLLER
		pitchRate_forResponse -= gainMatrixPitchRate[i] * stateErrorBody[i];
		// BODY FRAME YAW CONTROLLER
		yawRate_forResponse   -= gainMatrixYawRate[i] * stateErrorBody[i];
		// > ALITUDE CONTROLLER (i.e., z-controller):
		thrustAdjustment      -= gainMatrixThrust_NineStateVector[i] * stateErrorBody[i];
735
736
737
	}


pragash1's avatar
pragash1 committed
738
	// UPDATE THE "RETURN" THE VARIABLE NAMED "response"
739

pragash1's avatar
pragash1 committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
	// Put the computed rates and thrust into the "response" variable
	// > For roll, pitch, and yaw:
	response.controlOutput.roll  = rollRate_forResponse;
	response.controlOutput.pitch = pitchRate_forResponse;
	response.controlOutput.yaw   = yawRate_forResponse;
	// > For the thrust adjustment we must add the feed-forward thrust to counter-act gravity.
	// > NOTE: remember that the thrust is commanded per motor, so you sohuld
	//         consider whether the "thrustAdjustment" computed by your
	//         controller needed to be divided by 4 or not.
	thrustAdjustment = thrustAdjustment / 4.0;
	// > Compute the feed-forward force
	float feed_forward_thrust_per_motor = m_mass_total_grams * 9.81/(1000*4);
	// > Put in the per motor commands
	response.controlOutput.motorCmd1 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
	response.controlOutput.motorCmd2 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
	response.controlOutput.motorCmd3 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
	response.controlOutput.motorCmd4 = computeMotorPolyBackward(thrustAdjustment + feed_forward_thrust_per_motor);
757
758


pragash1's avatar
pragash1 committed
759
760
761
762
	// Specify that this controller is a rate controller
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_MOTOR;
	response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_RATE;
	// response.controlOutput.onboardControllerType = CF_COMMAND_TYPE_ANGLE;
763
764


pragash1's avatar
pragash1 committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
	// An alternate debugging technique is to print out data directly to the
	// command line from which this node was launched.
	if (shouldDisplayDebugInfo)
	{
		// An example of "printing out" the data from the "request" argument to the
		// command line. This might be useful for debugging.
		ROS_INFO_STREAM("x-coordinate [m]: " << request.ownCrazyflie.x);
		ROS_INFO_STREAM("y-coordinate [m]: " << request.ownCrazyflie.y);
		ROS_INFO_STREAM("z-coordinate [m]: " << request.ownCrazyflie.z);
		ROS_INFO_STREAM("roll       [deg]: " << request.ownCrazyflie.roll);
		ROS_INFO_STREAM("pitch      [deg]: " << request.ownCrazyflie.pitch);
		ROS_INFO_STREAM("yaw        [deg]: " << request.ownCrazyflie.yaw);
		ROS_INFO_STREAM("Delta t      [s]: " << request.ownCrazyflie.acquiringTime);

		// An example of "printing out" the control actions computed.
		ROS_INFO_STREAM("thrustAdjustment = " << thrustAdjustment);
		ROS_INFO_STREAM("controlOutput.roll = " << response.controlOutput.roll);
		ROS_INFO_STREAM("controlOutput.pitch = " << response.controlOutput.pitch);
		ROS_INFO_STREAM("controlOutput.yaw = " << response.controlOutput.yaw);

		// An example of "printing out" the "thrust-to-command" conversion parameters.
		ROS_INFO_STREAM("motorPoly 0:" << motorPoly[0]);
		ROS_INFO_STREAM("motorPoly 0:" << motorPoly[1]);
		ROS_INFO_STREAM("motorPoly 0:" << motorPoly[2]);

		// An example of "printing out" the per motor 16-bit command computed.
		ROS_INFO_STREAM("controlOutput.cmd1 = " << response.controlOutput.motorCmd1);
		ROS_INFO_STREAM("controlOutput.cmd3 = " << response.controlOutput.motorCmd2);
		ROS_INFO_STREAM("controlOutput.cmd2 = " << response.controlOutput.motorCmd3);
		ROS_INFO_STREAM("controlOutput.cmd4 = " << response.controlOutput.motorCmd4);
	}
}
797

pragash1's avatar
pragash1 committed
798
799
800
801
802
803
804
805
806
807
808


//  ***********************************************************
//  DDDD   EEEEE  BBBB   U   U   GGGG       M   M   SSSS   GGGG
//  D   D  E      B   B  U   U  G           MM MM  S      G
//  D   D  EEE    BBBB   U   U  G           M M M   SSS   G
//  D   D  E      B   B  U   U  G   G       M   M      S  G   G
//  DDDD   EEEEE  BBBB    UUU    GGGG       M   M  SSSS    GGGG

void construct_and_publish_debug_message(Controller::Request &request, Controller::Response &response)
{
809
810
811
812
813
814
815
816
817
818
819
820

    // DEBUGGING CODE:
    // As part of the D-FaLL-System we have defined a message type names"DebugMsg".
    // By fill this message with data and publishing it you can display the data in
    // real time using rpt plots. Instructions for using rqt plots can be found on
    // the wiki of the D-FaLL-System repository

	// Instantiate a local variable of type "DebugMsg", see the file "DebugMsg.msg"
	// (located in the "msg" folder) to see the full structure of this message.
	DebugMsg debugMsg;

	// Fill the debugging message with the data provided by Vicon
pragash1's avatar
pragash1 committed
821
822
823
824
825
826
	debugMsg.vicon_x      = request.ownCrazyflie.x;
	debugMsg.vicon_y      = request.ownCrazyflie.y;
	debugMsg.vicon_z      = request.ownCrazyflie.z;
	debugMsg.vicon_roll   = request.ownCrazyflie.roll;
	debugMsg.vicon_pitch  = request.ownCrazyflie.pitch;
	debugMsg.vicon_yaw    = request.ownCrazyflie.yaw;
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

	// Fill in the debugging message with any other data you would like to display
	// in real time. For example, it might be useful to display the thrust
	// adjustment computed by the z-altitude controller.
	// The "DebugMsg" type has 10 properties from "value_1" to "value_10", all of
	// type "float64" that you can fill in with data you would like to plot in
	// real-time.
	// debugMsg.value_1 = thrustAdjustment;
	// ......................
	// debugMsg.value_10 = your_variable_name;

	// Publish the "debugMsg"
	debugPublisher.publish(debugMsg);
}


//    ------------------------------------------------------------------------------
//    RRRR    OOO   TTTTT    A    TTTTT  EEEEE       III  N   N  TTTTT   OOO
//    R   R  O   O    T     A A     T    E            I   NN  N    T    O   O
//    RRRR   O   O    T    A   A    T    EEE          I   N N N    T    O   O
//    R  R   O   O    T    AAAAA    T    E            I   N  NN    T    O   O
//    R   R   OOO     T    A   A    T    EEEEE       III  N   N    T     OOO
//
//    BBBB    OOO   DDDD   Y   Y       FFFFF  RRRR     A    M   M  EEEEE
//    B   B  O   O  D   D   Y Y        F      R   R   A A   MM MM  E
//    BBBB   O   O  D   D    Y         FFF    RRRR   A   A  M M M  EEE
//    B   B  O   O  D   D    Y         F      R  R   AAAAA  M   M  E
//    BBBB    OOO   DDDD     Y         F      R   R  A   A  M   M  EEEEE
pragash1's avatar
pragash1 committed
855
//    ------------------------------------------------------------------------------
856

pragash1's avatar
pragash1 committed
857
void convertIntoBodyFrame(float stateInertial[12], float (&stateBody)[12], float yaw_measured)
858
{
pragash1's avatar
pragash1 committed
859
860
	if (shouldPerformConvertIntoBodyFrame)
	{
861
		float sinYaw = sin(yaw_measured);
pragash1's avatar
pragash1 committed
862
    	float cosYaw = cos(yaw_measured);
863

pragash1's avatar
pragash1 committed
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
    	// Fill in the (x,y,z) position estimates to be returned
	    stateBody[0] = stateInertial[0] * cosYaw  +  stateInertial[1] * sinYaw;
	    stateBody[1] = stateInertial[1] * cosYaw  -  stateInertial[0] * sinYaw;
	    stateBody[2] = stateInertial[2];

	    // Fill in the (x,y,z) velocity estimates to be returned
	    stateBody[3] = stateInertial[3] * cosYaw  +  stateInertial[4] * sinYaw;
	    stateBody[4] = stateInertial[4] * cosYaw  -  stateInertial[3] * sinYaw;
	    stateBody[5] = stateInertial[5];

	    // Fill in the (roll,pitch,yaw) estimates to be returned
	    stateBody[6] = stateInertial[6];
	    stateBody[7] = stateInertial[7];
	    stateBody[8] = stateInertial[8];

	    // Fill in the (roll,pitch,yaw) velocity estimates to be returned
	    stateBody[9]  = stateInertial[9];
	    stateBody[10] = stateInertial[10];
	    stateBody[11] = stateInertial[11];
	}
	else
	{
886
	    // Fill in the (x,y,z) position estimates to be returned
pragash1's avatar
pragash1 committed
887
888
	    stateBody[0] = stateInertial[0];
	    stateBody[1] = stateInertial[1];
889
890
891
	    stateBody[2] = stateInertial[2];

	    // Fill in the (x,y,z) velocity estimates to be returned
pragash1's avatar
pragash1 committed
892
893
	    stateBody[3] = stateInertial[3];
	    stateBody[4] = stateInertial[4];
894
895
896
897
898
899
	    stateBody[5] = stateInertial[5];

	    // Fill in the (roll,pitch,yaw) estimates to be returned
	    stateBody[6] = stateInertial[6];
	    stateBody[7] = stateInertial[7];
	    stateBody[8] = stateInertial[8];
pragash1's avatar
pragash1 committed
900
901
902
903
904
905

	    // Fill in the (roll,pitch,yaw) velocity estimates to be returned
	    stateBody[9]  = stateInertial[9];
	    stateBody[10] = stateInertial[10];
	    stateBody[11] = stateInertial[11];
	}
906
907
908
909
910
}




pragash1's avatar
pragash1 committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
void convert_stateInertial_to_bodyFrameError(float stateInertial[12], float setpoint[4], float (&bodyFrameError)[12])
{
	// Store the current YAW in a local variable
	float temp_stateInertial_yaw = stateInertial[8];

	// Adjust the INERTIAL (x,y,z) position for the setpoint
	stateInertial[0] = stateInertial[0] - setpoint[0] - m_xAdjustment;
	stateInertial[1] = stateInertial[1] - setpoint[1] - m_yAdjustment;
	stateInertial[2] = stateInertial[2] - setpoint[2];

	if (stateInertial[2] > 30.0f)
	{
		stateInertial[2] = 30.0f;
	}
	else if (stateInertial[2] < -30.0f)
	{
		stateInertial[2] = 30.0f;
	}

	// Fill in the yaw angle error
	// > This error should be "unwrapped" to be in the range
	//   ( -pi , pi )
	// > First, get the yaw error into a local variable
	float yawError = stateInertial[8] - setpoint[3];
	// > Second, "unwrap" the yaw error to the interval ( -pi , pi )
	while(yawError > PI) {yawError -= 2 * PI;}
	while(yawError < -PI) {yawError += 2 * PI;}
	// > Third, put the "yawError" into the "stateError" variable
	stateInertial[8] = yawError;


	if (yawError>(PI/6))
	{
		yawError = (PI/6);
	}
	else if (yawError<(-PI/6))
	{
		yawError = (-PI/6);
	}

	// CONVERSION INTO BODY FRAME
	// Conver the state erorr from the Inertial frame into the Body frame
	// > Note: the function "convertIntoBodyFrame" is implemented in this file
	//   and by default does not perform any conversion. The equations to convert
	//   the state error into the body frame should be implemented in that function
	//   for successful completion of the PPS exercise
	convertIntoBodyFrame(stateInertial, bodyFrameError, temp_stateInertial_yaw);
}



962
963
964
965
966
967
968
969
970
971
972
973
974

//    ------------------------------------------------------------------------------
//    N   N  EEEEE  W     W   TTTTT   OOO   N   N        CCCC  M   M  DDDD
//    NN  N  E      W     W     T    O   O  NN  N       C      MM MM  D   D
//    N N N  EEE    W     W     T    O   O  N N N  -->  C      M M M  D   D
//    N  NN  E       W W W      T    O   O  N  NN       C      M   M  D   D
//    N   N  EEEEE    W W       T     OOO   N   N        CCCC  M   M  DDDD
//
//     CCCC   OOO   N   N  V   V  EEEEE  RRRR    SSSS  III   OOO   N   N
//    C      O   O  NN  N  V   V  E      R   R  S       I   O   O  NN  N
//    C      O   O  N N N  V   V  EEE    RRRR    SSS    I   O   O  N N N
//    C      O   O  N  NN   V V   E      R  R       S   I   O   O  N  NN
//     CCCC   OOO   N   N    V    EEEEE  R   R  SSSS   III   OOO   N   N
pragash1's avatar
pragash1 committed
975
//    ------------------------------------------------------------------------------
976
977
978
979

// This function DOES NOT NEED TO BE edited for successful completion of the PPS exercise
float computeMotorPolyBackward(float thrust)
{
pragash1's avatar
pragash1 committed
980
981
982
983
984
985
986
987
988
989
990
991
	// Compute the 16-bit command signal that generates the "thrust" force
	float cmd = (-motorPoly[1] + sqrt(motorPoly[1] * motorPoly[1] - 4 * motorPoly[2] * (motorPoly[0] - thrust))) / (2 * motorPoly[2]);

	// Saturate the signal to be 0 or in the range [1000,65000]
	if (cmd < cmd_sixteenbit_min)
	{
		cmd = 0;
	}
	else if (cmd > cmd_sixteenbit_max)
	{
		cmd = cmd_sixteenbit_max;
	}
992

pragash1's avatar
pragash1 committed
993
994
    return cmd;
}
995
996
997
998
999
1000




//    ----------------------------------------------------------------------------------
//    N   N  EEEEE  W     W        SSSS  EEEEE  TTTTT  PPPP    OOO   III  N   N  TTTTT
For faster browsing, not all history is shown. View entire blame