CircleControllerService.cpp 7.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
//    Alternate controller that is expected to work.
//    Copyright (C) 2017  Cyrill Burgener, Marco Mueller, Philipp Friedli
//
//    This program is free software: you can redistribute it and/or modify
//    it under the terms of the GNU General Public License as published by
//    the Free Software Foundation, either version 3 of the License, or
//    (at your option) any later version.
//
//    This program is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU General Public License for more details.
//
//    You should have received a copy of the GNU General Public License
//    along with this program.  If not, see <http://www.gnu.org/licenses/>.

#include <math.h>
#include <stdlib.h>
#include "ros/ros.h"
#include <std_msgs/String.h>
#include <ros/package.h>
#include "std_msgs/Float32.h"

#include "d_fall_pps/CrazyflieData.h"
#include "d_fall_pps/Setpoint.h"
#include "d_fall_pps/ControlCommand.h"
#include "d_fall_pps/Controller.h"

#define PI 3.1415926535
#define RATE_CONTROLLER 0

using namespace d_fall_pps;

std::vector<float>  ffThrust(4);
std::vector<float>  feedforwardMotor(4);
std::vector<float>  motorPoly(3);

std::vector<float>  gainMatrixRoll(9);
std::vector<float>  gainMatrixPitch(9);
std::vector<float>  gainMatrixYaw(9);
std::vector<float>  gainMatrixThrust(9);

//K_infinite of feedback
std::vector<float> filterGain(6);
//only for velocity calculation
std::vector<float> estimatorMatrix(2);
float prevEstimate[9];

float saturationThrust;

CrazyflieData previousLocation;

//circle stuff
54
55
56
float currentTime;
const float OMEGA = 0.5*2*PI;
const float RADIUS = 0.35;
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143


void loadParameterFloatVector(ros::NodeHandle& nodeHandle, std::string name, std::vector<float>& val, int length) {
    if(!nodeHandle.getParam(name, val)){
        ROS_ERROR_STREAM("missing parameter '" << name << "'");
    }
    if(val.size() != length) {
        ROS_ERROR_STREAM("parameter '" << name << "' has wrong array length, " << length << " needed");
    }
}

void loadParameters(ros::NodeHandle& nodeHandle) {
    loadParameterFloatVector(nodeHandle, "feedforwardMotor", feedforwardMotor, 4);
    loadParameterFloatVector(nodeHandle, "motorPoly", motorPoly, 3);

    for(int i = 0; i < 4; ++i) {
        ffThrust[i] = motorPoly[2] * feedforwardMotor[i] * feedforwardMotor[i] + motorPoly[1] * feedforwardMotor[i] + motorPoly[0];
    }
    saturationThrust = motorPoly[2] * 12000 * 12000 + motorPoly[1] * 12000 + motorPoly[0];

    loadParameterFloatVector(nodeHandle, "gainMatrixRoll", gainMatrixRoll, 9);
    loadParameterFloatVector(nodeHandle, "gainMatrixPitch", gainMatrixPitch, 9);
    loadParameterFloatVector(nodeHandle, "gainMatrixYaw", gainMatrixYaw, 9);
    loadParameterFloatVector(nodeHandle, "gainMatrixThrust", gainMatrixThrust, 9);

    loadParameterFloatVector(nodeHandle, "filterGain", filterGain, 6);
    loadParameterFloatVector(nodeHandle, "estimatorMatrix", estimatorMatrix, 2);

}

float computeMotorPolyBackward(float thrust) {
    return (-motorPoly[1] + sqrt(motorPoly[1] * motorPoly[1] - 4 * motorPoly[2] * (motorPoly[0] - thrust))) / (2 * motorPoly[2]);
}


//Kalman
void estimateState(Controller::Request &request, float (&est)[9]) {
    // attitude
    est[6] = request.ownCrazyflie.roll;
    est[7] = request.ownCrazyflie.pitch;
    est[8] = request.ownCrazyflie.yaw;

    //velocity & filtering
    float ahat_x[6]; //estimator matrix times state (x, y, z, vx, vy, vz)
    ahat_x[0] = 0; ahat_x[1]=0; ahat_x[2]=0;
    ahat_x[3] = estimatorMatrix[0] * prevEstimate[0] + estimatorMatrix[1] * prevEstimate[3];
    ahat_x[4] = estimatorMatrix[0] * prevEstimate[1] + estimatorMatrix[1] * prevEstimate[4];
    ahat_x[5] = estimatorMatrix[0] * prevEstimate[2] + estimatorMatrix[1] * prevEstimate[5];

    
    float k_x[6]; //filterGain times state
    k_x[0] = request.ownCrazyflie.x * filterGain[0];
    k_x[1] = request.ownCrazyflie.y * filterGain[1];
    k_x[2] = request.ownCrazyflie.z * filterGain[2];
    k_x[3] = request.ownCrazyflie.x * filterGain[3];
    k_x[4] = request.ownCrazyflie.y * filterGain[4];
    k_x[5] = request.ownCrazyflie.z * filterGain[5];
   
    est[0] = ahat_x[0] + k_x[0];
    est[1] = ahat_x[1] + k_x[1];
	est[2] = ahat_x[2] + k_x[2];
    est[3] = ahat_x[3] + k_x[3];
    est[4] = ahat_x[4] + k_x[4];
    est[5] = ahat_x[5] + k_x[5];

    memcpy(prevEstimate, est, 9 * sizeof(float));
    
}

void convertIntoBodyFrame(float est[9], float (&state)[9], float yaw_measured) {
	float sinYaw = sin(yaw_measured);
    float cosYaw = cos(yaw_measured);

    state[0] = est[0] * cosYaw + est[1] * sinYaw;
    state[1] = -est[0] * sinYaw + est[1] * cosYaw;
    state[2] = est[2];

    state[3] = est[3] * cosYaw + est[4] * sinYaw;
    state[4] = -est[3] * sinYaw + est[4] * cosYaw;
    state[5] = est[5];

    state[6] = est[6];
    state[7] = est[7];
    state[8] = est[8];
}

void calculateCircle(Setpoint &circlePoint){
144
145
    circlePoint.x = RADIUS*cos(OMEGA*currentTime);
    circlePoint.y = RADIUS*sin(OMEGA*currentTime);
146
    circlePoint.z = 0.5;
147
    circlePoint.yaw = OMEGA*currentTime;
148
149
150
151
152
153

}

bool calculateControlOutput(Controller::Request &request, Controller::Response &response) {
    CrazyflieData vicon = request.ownCrazyflie;
	
154
    currentTime += request.ownCrazyflie.acquiringTime;
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

	Setpoint circlePoint;
    calculateCircle(circlePoint);

	float yaw_measured = request.ownCrazyflie.yaw;

    //move coordinate system to make setpoint origin
    request.ownCrazyflie.x -= circlePoint.x;
    request.ownCrazyflie.y -= circlePoint.y;
    request.ownCrazyflie.z -= circlePoint.z;
    float yaw = request.ownCrazyflie.yaw - circlePoint.yaw;
	
    while(yaw > PI) {yaw -= 2 * PI;}
    while(yaw < -PI) {yaw += 2 * PI;}
    request.ownCrazyflie.yaw = yaw;

    float est[9]; //px, py, pz, vx, vy, vz, roll, pitch, yaw
    estimateState(request, est);
	
    float state[9]; //px, py, pz, vx, vy, vz, roll, pitch, yaw
    convertIntoBodyFrame(est, state, yaw_measured);

    //calculate feedback
    float outRoll = 0;
    float outPitch = 0;
    float outYaw = 0;
    float thrustIntermediate = 0;
    for(int i = 0; i < 9; ++i) {
    	outRoll -= gainMatrixRoll[i] * state[i];
    	outPitch -= gainMatrixPitch[i] * state[i];
    	outYaw -= gainMatrixYaw[i] * state[i];
    	thrustIntermediate -= gainMatrixThrust[i] * state[i];
    }

    response.controlOutput.roll = outRoll;
    response.controlOutput.pitch = outPitch;
    response.controlOutput.yaw = outYaw;

    if(thrustIntermediate > saturationThrust)
        thrustIntermediate = saturationThrust;
    else if(thrustIntermediate < -saturationThrust)
        thrustIntermediate = -saturationThrust;

    response.controlOutput.motorCmd1 = computeMotorPolyBackward(thrustIntermediate + ffThrust[0]);
    response.controlOutput.motorCmd2 = computeMotorPolyBackward(thrustIntermediate + ffThrust[1]);
    response.controlOutput.motorCmd3 = computeMotorPolyBackward(thrustIntermediate + ffThrust[2]);
    response.controlOutput.motorCmd4 = computeMotorPolyBackward(thrustIntermediate + ffThrust[3]);

    response.controlOutput.onboardControllerType = RATE_CONTROLLER;

    previousLocation = request.ownCrazyflie;

    
	return true;
}


int main(int argc, char* argv[]) {
    ros::init(argc, argv, "CircleControllerService");

215
    currentTime = 0;
216
217
218
219
220
221
222
223
224
225
226

    ros::NodeHandle nodeHandle("~");
    loadParameters(nodeHandle);

    ros::ServiceServer service = nodeHandle.advertiseService("CircleController", calculateControlOutput);
    ROS_INFO("CircleControllerService ready");
    
    ros::spin();

    return 0;
}