Master solutions

Your first script

#!/bin/bash
echo 'Hello, World!'

Count to 100

Make sure the parameter expansion is quoted properly. It may not be necessary here, but it is good practice.
#!/bin/bash
for i in {1..100}
do
echo "$i"
done

Here, we use brace expansion, so we can’t use quotes.

#!/bin/bash
echo {1..100}

Set up a script directory for your user

The following line should be added to either -/.profile or ~/.bashrc. You have to log out and back in to make it work.

export PATH="$PATH:/home/user/scripts"

You can test whether it worked by running

echo "$PATH"

in your terminal.

Parse some options

#!/bin/bash
while getopts 'h7abc:' opt; do
case "$opt" in

h|\7?)
echo 'Available options: -h, -a, -b, -c ARGUMENT'
exit O
55

a)

echo 'Option a selected'
b)
echo 'Option b selected'
c)
echo "Option f selected with argument $0PTARG"
esac
done

shift $((OPTIND-1))

The shift line at the end is important! If you have more arguments (that aren’t options), you can’t access them
otherwise.

Output all your arguments

#!/bin/bash
for i in "$@"
do

echo "$i"
done

Make sure all quotes are put correctly. Especially the expression "se MUST be quoted.

Find big files

#!/bin/bash

usage () {
echo "usage: $0 directory"
exit 1

}

We want ezactly one argument
if [["$#" -ne 1]1]; then
usage
fi
dir="¢1"
Test whether argument is a directory
if + [[-d "$dir" 1]
then
usage

fi

Find files in dir, sort by size and print largest 5
find "$dir" -printf '%s %p\n' | sort -nr | head -n 5

The use of a function for usage is not required, but it’s good practice.

Self-reproducing script

#!/bin/bash
cp "$0" backup.sh

This second example also works, but is bad practice: it is discouraged to use cat to get the contents of a file in a
bash script. There are almost always better ways to do that.

#!/bin/bash
cat "$0" > backup.sh

Make your bash prompt fancy

Not much to say here, all solutions will be individual

Maze generator

RANDOM IS an environment variable that takes on a different numeric value every time you read it.

#!/bin/bash
while true

do
(C $RANDOM % 2)) \
&% echo -n '/' \
|l echo -n '\' \
sleep 0.07
done

Simple backup script
The £inda option -type £ makes sure only files are listed (and not directories). The -ctine -1 option makes sure only files
not older than 1 day (24 hours) are listed.

#1/bin/bash
find . -type f -ctime -1 | xargs tar -czf 'backup.tar.gz'

Screen brightness control

#!/bin/bash

(C $# ==0)) &y {
echo "No argument given; exiting"
exit 1;

-z tests whether string is empty (zero length). We search for + or - in the string.

if [[-z $(echo $1 | grep -Eo "\+|-") 1]
then

newbrightness="§1"
else

brightness="$(cat /sys/class/backlight/intel_backlight/brightness)"
newbrightness="$ (($brightness $1))" # becomes for exzample 10 +1
fi

prevent screen from going all black. The threshold wvalue might wvary,
since the scale of brightness wvalues is different on every system
if (($newbrightness < 10))
then
newbrightness=10
fi

use tee instead of redirections because we need sudo
echo "$newbrightness" | sudo tee /sys/class/backlight/intel_backlight/brightness > /dev/null

The file path might of course vary. If you don’t find a brightness file in /sys/c1ass/backiight, chances are this script is
not possible on your system.

Automatic update script

This script is designed to be used with sudo, i.e. sudo updatescript. If you use it like that, you don’t need sudo for zypper
inside the script.

#!/bin/bash
First, move old files out of the way safely. Discard error messages.
mv -b /home/user/updatelog /home/user/updatelog-old > /dev/null 2>&1

{ zypper up > /home/user/updatelog } \
&% rm /home/user/updatelog

poweroff

Of course, the zypper command is for openSUSE, and other distros require other commands.

Disable/Enable external monitor output

These are some examples. It depends on your setup what you need.

#!/bin/bash
xrandr --output HDMI-0 --auto --left-of LVDS-0

#!/bin/bash
xrandr --output HDMI-0 --auto
xrandr --output LVDS-0 --off

#!/bin/bash
detect a monitor
if xrandr | grep 'HDMI-O connected' > /dev/null
then
xrandr --output HDMI-0 --right-of LVDS-0
fi

Display a random headline from Reddit

This exercise requires you to parse strings to display them nicely. That can be quite tedious, and the commands
used for it are often cryptic (cf. sea). Don’t be scared.

#!/bin/bash
curl -A 'Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)' -s
https://www.reddit.com/r/showerthoughts. json \

jshon -e data -e children -a -e data -e title \

shuf -n 1 \

sed 's/\\//g' \

sed 's/~"//' \

sed 's/"$//'

The three seas are merely for pretty printing. The first removes backslashes, the second removes the first quote and
the last removes the last quote.

In a sea expression, ~ matches the beginning of a line and $ matches the end. Also, backslashes (among other
characters) have to be escaped using yet another backslash.

Wallpaper change every 10 minutes

You can run this script in the background, like this: ./walipaperscript &

#!/bin/bash

while true

do
feh --bg-fill --randomize ~/pictures/wallpaper/*
sleep $((60 * 10))

done

Your own TODO program

#! /bin/bash
use a subshell to contain the directory change
(
we work in .config, this 4isn't mandatory. ~/.config is where many
programs store user configuration.
mkdir -p ~/.config/todo
cd ~/.config/todo
touch todolist # touch creates a file if it doesn't exzist yet

while getopts 'i:d:h' opt; do
case "$opt" in
hI\7?)
echo 'Valid flags: -i -d -h'
i)
echo "$OPTARG" >> todolist
d)
sed '3d' deletes the 3rd line from a file.
sed -e "${0OPTARG}d" todolist > /tmp/todolist
cp /tmp/todolist todolist
esac
done
the -n option adds line numbers
cat -n todolist

Reminder script

#!/bin/bash
mins="$§1"
shift 1

echo notify-send "'$@'" | at now + "$mins" min &>/dev/null
echo "Reminder: $@ set for $mins mins from now."

Youtube downloader

#!/bin/bash

query="$@"
get youtube search results page
search for links that contain 'watch\?v=' followed by 11 characters
take the first one
ytid=$(\
curl -s --data-urlencode "search_query=$query" https://www.youtube.com/results \

| grep -oE ‘'watch\?7v=.{11}' \
| head -n 1 \

)

echo "$ytid"

youtube-dl -f bestaudio -o "%(title)s_%(id)s.%(ext)s" "https://www.youtube.com/$ytid"

Web radio

#!/bin/bash

tidy up first
killall mpv

The & is not required but useful. Cache size is increased for lag free streaming
mpv http://213.251.190.165:9000 -cache 1024 &

Image resizer
#!/bin/bash
mkdir -p resized

for i in =*

do
The > indicates that ImageMagick should only shrink larger images
convert "$i" -resize '100x100>' resized/"$i"

done

Assignment-fetcher

#!/bin/bash

while getopts 'h?lf:u:p:' opt; do
case "$opt" in

h|\?7)
echo "usage: $0 [-1] [-f FILTER] [-u USER] [-p PASSWORD] URL"
exit O

£)

filter="$0PTARG"

35

u)
user="$0PTARG"
p)
pass="$0PTARG"
1)
list=true
esac
done

shift $((OPTIND-1))

url=$1

Bare url up to the first slash.
The grep first finds all characters up to the first dot, and then from there on finds
all characters that are NOT slashes up to the first slash.
The sed is used to escape all slashes within the url. / becomes \/
baseurl=$(\
echo $url \
| grep -oe '.*\.[7/1%/' \
| sed -e 's/\//\\\//g' \

~

URL without file name (up to the last slash).
The grep just finds everything up to a slash. By default it uses greedy matching,
which means that <t finds the longest fitting sequence.
The sed is used to escape all slashes within the url.
longurl=$(\
echo $url \
| grep -oe '.*x/' \
| sed -e 's/\//\\\//g' \

The last command used in the command chain below depends on an option.
4if -1 was passed, we just echo the found pdfs. Otherwise download them.
if [$list == true]

then

the -n option is for zmargs

lastcmd="-n 1 echo"
else

lastcmd="wget --user $user --password $pass"
fi

First, find strings that end in .pdf
Then, prepend the base url to all strings that are relative urls
Then, apply the filter
Then, if an url starts with // (relative to root), prepend the longurl
last, download or display the urls
curl -s $url \

| grep -oe '[""1x\.pdf' \

| sed -e "s/"\//$baseurl\//"

| grep -e "/[°/1*$filter [/]*\.pdf" \

| awk "{ if C \$0 !~ /\/\//) { print \"$longurl\" \$0 } else {printl} }" 2>/dev/null \

| xargs $lastcmd

	Master solutions
	Your first script
	Count to 100
	Set up a script directory for your user
	Parse some options
	Output all your arguments
	Find big files
	Self-reproducing script
	Make your bash prompt fancy
	Maze generator
	Simple backup script
	Screen brightness control
	Automatic update script
	Disable/Enable external monitor output
	Display a random headline from Reddit
	Wallpaper change every 10 minutes
	Your own TODO program
	Reminder script
	Youtube downloader
	Web radio
	Image resizer
	Assignment-fetcher

