The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

Contents

1 Welcome 3
1.1 A Word About Organisation 3
1.2 Getting What You Need e 3

2 Basics 4
2.1 Explanation of Basic Concepts L 4

Terminal and Commands e 4
AN & . v e 4
Flags o o e 5
Wildcards e 5
SUAO . . . L e 5

2.2 EXercises e e 6
Exercise 0: man e e e e e 6
Exercise 1: Is e 6
Exercise 2: mv . . . L L e 6
Exercise 3: cd e 6
Exercise 4: cat L e e e 7
Exercise 5: mkdir and rmdir 7
Exercise 6: T L L L e e e 7
Exercise 7: cp oL e 7
Exercise 8: clear 7

3 Files 8
WEC v o v e 8

difl . e 8
chown e 8
chmod 8
echo . . . e 9
touch 9

In . e 9

file . . e e 9

less . . o e e 10
which (whereis) 10
Exercise 1 e e e 10

4 Jobs 11
Exercise 1: fg, bg, &, top, htop, kill, pkill, killall 11
Exercise 2: ps, kill, killall, pkill o 11

[GE) =v-sn | 1

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

5 Remote 12
Exercise 1: ssh, scp o e e 12
Exercise 2: tmux Lo e 12

6 Searching 14
Exercise 1: grep L 14
Exercise 2: find L oL e 15
Exercise 3 e 15

7 System Management 16
Exercise 1: Power on/off L oL 16
Exercise 2: Space Left on Disk 16
Exercise 3: User Management L0 Lo 16

8 Block devices and file systems 17
Exercise 1: Partitiona disk 17
Exercise 2: Create a filesystem L o o 17
Exercise 3: Using dd L e 17

9 Software management 18
Exercise 1: Package manager o 18
Exercise 2: Ubuntu only: Installing software from PPA 18
Exercise 3: Installing a package manually 19
Exercise 4: Compile from source using git 19
Exercise 5: Installing from a self-containing install script 20

10 License 22

[Co) =v-sn | 2

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

1 Welcome

Welcome to the Hacking Session! This workshop is designed as an exercise to go with the Toolkit
course. If you did not attend said course, we suggest you have a look at its slides, which can be found
on our website. However, you can of course also solve them independently. Please make sure to read
this page carefully before starting.

1.1 A Word About Organisation

Exclusion of liability

By taking part in this exercise, you acknowledge that you alone are responsible for your computer.
TheAlternative and its parent organisation, the Student Sustainability Commission, will not be held
liable for any damages or loss of data.

Ask

If anything is unclear in the exercises feel free to raise your hand and one of our staff members will
come and help you.

Difficulty

The exercises are designed to be solved through self-initiative. For most exercises there are no step-
by-step guides, but we will give you hints that point you in the right direction. In addition, the usage
of manual pages and search engines is actively encouraged. The exercises are generally not meant to
be completely solved within the 2 hours given to you in the session, as we tried to present a wide
range of different topics with varying degrees of difficulty. Feel free to skip some exercises if they’re
not challenging or interesting enough to you, or if you get stuck at something.

1.2 Getting What You Need

In addition to this exercise sheet, you will need to download some files for some of the exercises. Those
files can be found on our Github repository. Do not worry if you do not know yet what git is and
how to use it. Simply follow the steps described below:

e Open the terminal on your computer
o Navigate to the directory you wish to download the files to
e Type git clone https://github.com/TheAlternativeZurich/HackingSession.git

Now you have all the necessary files and directories and you are ready to start.

Have fun!

[Co) =v-sn | 3

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

2 Basics

This section aims to introduce you to, and train the usage of basic concepts and commands.

2.1 Explanation of Basic Concepts

Here you will find a short explanation of the main concepts to get you started. If you're tired of reading
or already know most of this from the Toolkit course, then skip down to the Exercises section to test
your skills at some practical tasks.

Terminal and Commands

The Linux terminal, also called console, is the standard command line interface we use to enter com-
mands. It is found on every Linux distribution, and is the most versatile tool at your disposal. It
lets you use a so-called shell, which is in simple terms a program that takes commands written by
the user and executes them. Don’t worry much about the exact definitions of a shell and a terminal.
Being able to differentiate the two is irrelevant for an every-day user.

To run a command, type its name in the console and then press Enter. Should you ever need to cancel
a running command, you can use the keyboard combination Ctrl+C to interrupt it. Note that the shell
(by default) is case-sensitive, so capitalization matters.

man

man is a command you will need throughout all of the following exercises. It stands for “manual” and
shows you what almost any given command can do and which options are available for it. Almost all
commands provide such a “manpage”, which is typically written by the developers themselves. They
are hence reliable, and are the single most important tool to get comfortable with using your shell.

Some man pages are absolutely huge and may make you feel quite overwhelmed when you first open
them. This is completely normal! The information you need for actually understanding how to run a
program/command will in 90% of the cases be described in the first few lines of the page. The bulk
of the manual usually describes special options (flags) that change how the command behaves when
executed. Don’t worry if you can’t remember the details of a command or what its various options
do. The most important thing to take away from a manual is a rough idea of what a command does:
With that, you will know in which situations you can use it. The details can still be looked up in the
manual and you will learn them by heart as time goes by.

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (bui]d date October 18, 2017)

Try it yourself!l The man command itself has its own manpage. Type man man to access it, use the
arrow keys to scroll, and press Q to exit.

An alternative to using the man pages is to try and see if a command has a help option. This is usually
displayed by appending the option --help after the name of the command (don’t forget to put spaces
between the name of the command and the option), which will often display much shorter and concise
instructions on how to use a command. For example, the man command also has a --help option.
Simply type man --help, and the command will display information directly in your terminal.

Flags

Flags are options you can add to a command to change the way it behaves. The option -h or --help
described above is one of them, and is a good example as it causes the command to display information
about itself instead of performing its main function. There are many more flags like this, and their
name and purpose usually differs between all programs and commands. Single character options are
always preceded by -, while those with multiple letters are preceded by --. It is also possible to use
multiple different flags together at once, and you can also string them together for quick execution.
For example, for the command 1s described below, you can type 1s -lah instead of 1s -1 -a -h. (to
see what these flags do, consult the man page by typing man 1s!)

Wildcards

Wildcards are placeholder symbols that are replaced when a command is read by the shell.
There are three different types of wild cards:

e The star wildcard * acts as a placeholder for any number of consecutive symbols. For example,
writing *. jpg addresses all files and folders that end with . jpg. Writing D*s addresses all files
and folders that start with a D and end with a s, and so on.

e The question mark wildcard ? acts as a placeholder for a single symbol only. For example:
?777.png will address all files that end with .png that have 3 letters.

o The bracket wildcard [...] can be used as a placeholder for the symbols we specify inside. [1-9]
for example acts as a placeholder for the numbers 1 to 9, and [ABC] acts as a placeholder for
those 3 letters only.

Furthermore, there is also a concept called “Regular Expressions” which fulfills a similar purpose. We
will not elaborate on this here however.

sudo

Similar to Windows or MacOS, in Linux we differ between user accounts that have different access
permissions. Users usually do not have permission to simply install new packages or alter files outside
of their home directory. The exception to this is root, who has permission to alter whatever he wants,
install whatever he wants, and destroy whatever he wants.

In order for a user to run single commands and programs as root, we make use the command sudo.
Example: sudo echo "Hello World"

If the user who executes the command is in the sudoers group (grants permission to use sudo), the
shell then asks the user for his password. Once it is entered, the command will run just as it normally

[Co) =v-sn | 5

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

would — only that now, it is being ran by root instead of the user account. If you don’t want to enter
your password every time you need to use sudo, you can use the command sudo su to become root
inside the current shell. This will allow you to run all commands with no confirmation needed (We
strongly advise against doing this for now however!). Type exit if you want to return to the user
account.

Note that most commands that require you to use sudo usually have a good reason to do so, as they
may have the potential to cause serious damage to your system. Upon first entering sudo, you will be
met with the quote With great power comes great responsibility.. Take this to heart, as the
majority of commands on Linux will not ask twice, even when you're about to do something foolish.

2.2 Exercises

Here you will get to try things yourself!

We don’t give you any step-by-step instructions however. You will have to find things out yourself!
(or ask our helpers should you get stuck)

Exercise 0: man

If you haven’t done so before, you should definitely make yourself familiar with the man command, as
you will need it for the following tasks. Type man man in the shell and hit enter. You don’t have to
read the whole thing, but skimming over it is definitely a good idea. Also, while the manual of man is
open, you can hit h to make a window with keyboard shortcuts pop up. This is a good opportunity
to take a look at them, because it is vital that you know how to search a manpage and how to move
around within it quickly!

Exercise 1: Is

1s stands for “list”.

a) List all files (including hidden files) in your current directory.

b) List all files in your /bin directory.

¢) List all files in your /bin directory whose names consist of only two letters.
d) Find the size of your bash executable (/usr/bin/bash or /bin/bash).

Exercise 2: mv

mv stands for “move”.

a) Make a file hello using touch hello. Now rename this file to world.
b) Move this file into a different directory. (e.g. your Downloads folder).

Exercise 3: cd

cd stands for “change directory”.

a) From your home directory, change to ./Documents. Then change back to the home directory.

[Co) =v-sn | 6

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

b) Change into the /root directory
¢) Change back to your home directory without writing out the full path.

Exercise 4: cat

cat stands for “concatenate files and print to the standard output”.

a) Look at the output of whatever file you desire.
b) Move the contents of one file into another, overwriting it. (Hint: Look up the redirection operator)

Exercise 5: mkdir and rmdir

mkdir stands for “make directory”, rmdir for “remove directory”

a) Make a directory called hello in your home directory, and then remove it.
b) Can you remove your home directory with rmdir?

Exercise 6: rm
rm stands for “remove”. It directly removes files, it doesn’t put them in the trash. Any data that you
remove with rm is gone forever.

a) Create a file called world, then delete it.
b) Create a directory called foo. Change to this directory, then create 3 files with names of your
choice inside this directory. Remove them all at once.

Exercise 7: cp

cp stands for “copy”.

a) Make a Backup directory and copy your .bashrc (bash configuration file) there. Check if it
worked with 1s.

b) Copy a directory into Backup/ (e.g. your Downloads directory). What is the difference to copying
a file?

¢) Remove the Backup/ directory you just created.

Exercise 8: clear

clear stands for “clear the terminal”

a) After you worked through the previous exercises, clear the terminal

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

3 Files

This section introduces you to basic commands related to files.

WwWC
wc stands for “wordcount”. It prints newline-, word-, and byte-counts for each file, and a summary
line if more than one FILE is specified.
Syntax:
wc [OPTION]... [FILE]...

diff
diff stand for “difference”, compare files line by line.

Syntax:
diff [OPTION]... [FILE]...

chown

chown stands for “change owner”. It can also change group owner.
Syntax:
chown [OPTION]... [OWNER]I[:[GROUP]] FILE...

chmod

chmod stands for “change file mode bits” and controls the following permissions on any given file:
e Read: Who can see the file data.
e Write: Who can modify the file.
o Execute: Who is allowed to run the file (like a program or a script)

Permissions can be read using 1s -1.

Syntax:

[Co) =v-sn | 8

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

chmod [OPTION]... MODE[,MODE]... FILE...

echo

echo - output the given line of text (useful for displaying the content of variables)
Syntax:
echo [SHORT-OPTION]... [STRING]...

touch
touch - change file timestamps (access and modification times) to the current time or to a specific one
defined through the options. Most useful for creating new, empty files.
Syntax:
touch [OPTION]... FILE...
-t STAMP~ use [[CC]YY]MMDDhhmm[.ss] instead of current time

Note: a FILE argument that does not exist is created empty (this mode of operation was already used
in the section basics).

In

1n - make links between files.
Syntax to create a link to TARGET with the name LINK_NAME:
1In [OPTION]... [-T] TARGET LINK_NAME
Note: If you use 1n like this, it will create a so-called ‘hardlink’. It is generally advisable to use softlinks
(symlinks) instead, because they will also work across file systems. To do so, you will need to pass the

-s flag like this: 1n -s TARGET LINK_NAME. Be aware that you will have to use the absolute path for
TARGET.

file

file - determine file type.
Syntax:
file [OPTION]... FILE...

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

less
less - A file viewer. less allows to scroll forward and backward in a file with the arrow keys. The
current file can be opened in an editor by pressing v, and less can be quit by pressing q.
Syntax:
less [OPTION]... [filename]...

which (whereis)

which - shows the full path of (shell) commands.
Syntax:

which [options] [--] programname [...]

whereis - locate the binary, source, and manual page files for a command.
Syntax:
whereis [OPTIONS] name...

Exercise 1

a) For this set of exercises, create the temporary working directory TempDir in your home directory.
Now, make it your current working directory.
Create the file capture.txt containing some text typed through your keyboard. Hint: Use a
console text editor such as nano
How many lines, words and characters does this file have?
Make a copy of the file and compare both files.
Append text to the copied file and compare with the original.
Assign user root and group users as new owner of the original file and check the change. Hint:
Check the current owners of the files first
) Change the file attributes to make it write protected and try to append text again.
) Generate a new line in the terminal which contains “Hello World!”.
i) Change the date and time of the file capture.txt to 31.01.2017 00:01 and check the result.
) Create a link to the capture.txt file in the desktop, minimize the terminal and look for the new
link on the desktop. Can the text editor open the file?
k) Check the file types in the following directories: your test directory, downloads, pictures and
music. Make a list of all those file types creating the file-types.log file.
1) Explore the log file file-types.log with the command less.
m) Obtain the location of the command 1s, as well as the location of it’s manual.
n) Delete the content of TempDir directory and check it was deleted. Then delete the directory.

=

- ® &0
NGNS

=S}

.

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

4 Jobs

This section deals with processes. You will learn how to manage programs in the console. Especially,
you will move them to back- and foreground and learn how to force terminate a blocked program.

Exercise 1: fg, bg, &, top, htop, kill, pkill, killall

a) Install htop if you do not already have it.

b) Navigate to the jobs directory.

¢) Run the infiniteloop.sh script. Now your terminal should become unresponsive.
d) Find a way to stop the script without closing the window.

Now we want to learn how to kill processes running in the background. This is helpful when you have
programs that have hung themselves up and have to be shut down. Collectively, the commands you
will be using are known to provide “process control”, that is, functionality similar to task managers
known from Windows/OS X. So we will basically learn how to use Ctrl+Alt+Delete under Linux ;)

e) Run the script used in exercise ¢) again, but in a way such that it becomes a background job.

) Now turn it into a foreground job while it’s still running. Do you notice a difference?

) Now move it back to be a background job. Can you still kill it as before?

) Try and find out the PID (process id) of your started process (you might want to do this in a
different terminal).

i) Use the kill command with the PID to get rid of the process.

j) Finally, start 3 instances of infiniteloop.sh, each of them running in the background, then
use the jobs command. Now kill them in the following order, as presented by jobs: 2, 1, 3

Exercise 2: ps, kill, killall, pkill

Do the same as above but this time without using top or htop and use a different method to kill it.
You also do not need to do all that background foreground stuff again.

Can you find the parent of the process you started?

[Co) =v-sn | 11

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

5 Remote

In this section you will learn how to work on a machine which you have no physical access to (i.e. you
cannot connect a keyboard, mouse or screen). Examples for such machines are: routers, Raspberry
Pis, a computer that is 200km away, ETH’s supercomputers et cetera... In particular, you will find
out how to securely connect to those machines, run commands on them, how to copy files back and
forth and see how many users are logged in.

Exercise 1: ssh, scp

In this exercise you will learn how to access a compute cluster and do stuff on it and get results. For
this please first find the C program called supercoolNumercialSimulation.c. ssh and scp are the
most important commands you will use within this exercise. ssh is used to connect to a machine
remotely, while scp is used to copy files. For this exercise, it’s probably best if you don’t lose yourself
in trying to understand how ssh, resp. scp works exactly, because there is quite a bit of cryptography
and complicated network stuff involved. To get a general idea of how it works: ssh stands for “Secure
Shell” and scp stands for “Secure Copy”. Both make use of the cryptographic library openSSL in order
to be able to exchange your data securely. If you are interested, you may also use the utility sftp for
transferring files. If you do this, you need to check online for documentation (or run man sftp) since
the solution to this exercise shows the scp method.

a) Connect to pterodactyl.vsos.ethz.ch with the user hacker via ssh (the password is hacker).
If you are doing this from home, chances are that we already disabled ssh access, due to security
reasons.

b) Make yourself familiar on the remote machine and make a directory with your name as the

directory name.

) Return to your local machine.

) Copy the C program you found before to your directory on the remote machine.

e) Again access the machine and compile the program.

) Run it.

) Find its output and copy it to your remoteExercise directory on your local machine.

Exercise 2: tmux
This exercise is about using the terminal multiplexer tmux. Using it gives you several advantages, here
are a few:

o If the connection gets lost, running processes on the remote machine will keep working indepen-
dently.

The <ch Hacking Session - r158.49907d0
for a sustainable digital world (bui]d date October 18, 2017)

You can turn off your local computer without interrupting the remote calculation. You may
re-connect to the remote tmux session any time to check how your calculations are doing.

tmux allows you to tile your terminals and have several terminals open through the same ssh
connection.

You may collaborate with someone else and you both see the same content.

Consider looking up tmux keyboard shortcuts online.

Start tmux on your local machine.

Split your tmux horizontally (so that you have one terminal on top of the other).

Split the upper half vertically and try to navigate into each of the three parts.

Open up another terminal and connect to tmux (Caution: this is not the same thing as starting
tmux).

Verify that whatever you do in one terminal is also reproduced in the other one.

Close both terminal windows, open up a terminal and attach. Verify that tmux kept running in
the background and that it’s still in the state in which you left it..

Close every bit of tmux until tmux is not running any more.

Connect to pterodactyl.vsos.ethz.ch as in Exercise la.

Type the command w, then hit Enter to see how many users are currently logged in.

Attach to tmux (if none is running, start it). Note that there might be an arbitrary number of
people already logged in and all of you type in the same window. Have fun ;-)

Detach from tmux, but not by closing the terminal nor by exiting tmux. Check online for how
to do this.

Log out from the remote server.

[Co) =v-sn | 13

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

6 Searching

These ezercises cover the grep and find commands in detail.

We’re going look at two of the most important commands that perform “search-like” operations. Their
names are grep and find. find is a command that is used for finding certain files. grep is a bit more
complex and allows you to search a file’s contents.

I would recommend that you do the exercises on both grep and find - they are very powerful when
used in combination. If you have to choose only one, I recommend grep because I use it much more
often.

Exercise 1: grep

grep searches the text using so-called Regular Expressions (commonly referred to as Regex). Regexes
are textual patterns that encode a set of strings. In other words, a Regex is simply an efficient way to
specify many strings. For example, un(b|£f)ounded is a Regex that stands for both “unbounded” and
“unfounded”. There are many Regex standards, and they may differ in the special characters they use.
It’s probably a good idea to read https://en.wikipedia.org/wiki/Regular expression#Basic_ concepts.
After that, the grep manual provides some further information.

Fun fact: grep’s name comes from globally search a regular expression and print. This is a wordplay
on the ed command g/re/p, which searches for a Regex and prints it. ed is one of the very first text
editors created. Nowadays, no one uses ed anymore because there is no reason to do so (maybe apart
from bragging rights), but ed has influenced a lot of commands commonly used in Unix.

a) Take a look at the file HackingSessionExercises/grep_exercise.md. In this exercise, you will
search the file for various patterns using grep. The goal is that you use grep to output only
what is written in the exercises.

b) Find the word “contains”.

¢) Come up with a pattern such that the output are the three lines Dog, Dig and Dug.

Hint: Take a look at the -E or the -P flag for grep. You will need one of them here.

) Look for all lines beginning with ##.

) Print all lines beginning with ##, but exclude the ones that starts with ###.

) Search for the lines Cat, Rat, Sat and so on, up until Bat, but without the line Latin.

) Produce the same lines as in €), but this time with the line Latin included.

) Try for the lines Brat up until Bat, but without the line Latin.

i) Adjust your command so that it lists the lines Brat up until Bat, this time with Latin.

) Check for the three list elements (these are the lines beginning with *).

) Investigate for the entire block of Java code (the one at the end of the file).

) Within that code, output the class that contains the method out.

) Pry for all animals that consist of exactly two words.

[Co) =v-sn | 14

https://en.wikipedia.org/wiki/Regular_expression#Basic_concepts

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (bui]d date October 18, 2017)

n) Probe for all animals that begin with Danger. Note: Take particular care that “Booplesnoot”
and “Trash Panda” aren’t part of your output. This makes it more tricky.
o) Finally, if you’re still motivated: All animals that contain the word Danger or danger.

Exercise 2: find

In this exercise you’ll use the find command to do some complicated file finding. You can “chain”
filters, so for searching for a file that is called “asdf” and has size less than 50MB, you can do find -
name asdf -size -50M. As usual, there are some more examples at the bottom of the manpage.

a) Navigate to your home directory.

) Using find, search for all files that were modified less than 5 days ago.
) Using find, search for all the files that you have write access for.

) Search for all files that start with the letter d.
)
)
)

=3

Search for all files smaller than 1MB, but larger than 10KB.
Find all files in the directory Desktop (or some different directory).
Search for all files starting with the letter d and execute cat on them.

- ® &0

o

Exercise 3

Combining the knowledge of grep and find, we can search for some incredibly specific stuff! Look at
the exec flag in the manual for find.

a) Navigate to your etc directory (/etc, on most distributions).

b) Within that directory, search for all lines of text containing the word “root”.

¢) If you received a lot of error messages in exercise b), try to limit your search to files which you
have read permissions for.

d) Search for all files containing an IPv4 address. (Ignore the fact that the adress ranges only from
0 to 255)

e) Output all comments (lines starting with a #) of all files with a name ending in .conf.

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

7 System Management

In this section, you will learn how to turn off your computer from the console, how to check the
available disk space and how to manage users and groups from the shell. Note that when you use the
shell for modifying a user, the system settings panel will also reflect these changes.

Exercise 1: Power on/off

You can use the shell to do various system management tasks from the command line. For example,
you can use the command “poweroff” to shut down your computer immediately. This exercise explores
some more examples: (you might need to use sudo)

a) Using your terminal, try to put your computer into suspend, and wake it back up. (Hint: Use
the command systemctl)

b) Schedule your laptop to shut down in 10 minutes. Then cancel it.

¢) Reboot your computer from the command line.

Exercise 2: Space Left on Disk

Useful commands: df, du

a) Find out what size (in MB) the exercise directory has.
b) Find out how much space is used by your root directory /.

Exercise 3: User Management

Useful commands: useradd, userdel, groupadd, groupdel, gpasswd, passwd
a) Add a new user called ExerciseUser.
b) Add a new group called ExerciseGroup.
¢) Add your new user to the new group.
d)

Remove the user and the group again.

Hint: If you are confused by gpasswd and passwd, consider the following: One of them is used
to set the password for a user, the other is used to add a user to a group.

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

8 Block devices and file systems

This exercise is a bit more advanced! It will involve creating/editing partitions from the command line
and manipulating block devices and file systems. Instead of using real disks, we will be working with
files that “pretend” to be disks.

WARNING: If any of the following exercises require you to run them as root, you should not be doing
that!

Exercise 1: Partition a disk

Useful tools: cfdisk, gdisk

For the purpose of this exercise, we provided a file called TestDisk. You can treat it like a regular
block device (like /dev/sda), but using this file you will not damage your live system.

a) Create two partitions: One with 1MB size, one with the rest of the available space. Both should
be of type Linux filesystem.

Exercise 2: Create a file system

Useful tools: mkfs.ext4, mkfs.vfat

For the purpose of this exercise, we provided two files: partitionl and partition2. This will again
not change your actual system.

a) Create a FAT file system on partitionl.
b) Create a ext4 file system on partition2.

You can check if this worked by looking at the output of file partitionl and file partition2.

Exercise 3: Using dd

WARNING: Don’t do the following to your actual file systems! You can destroy your file systems!
Especially don’t run any of the commands as root.
With dd you can write images to a disk, like an image of a Linux distribution.

a) Write image.iso to TestDisk using dd.
You can check if this worked by looking at the output of cat TestDisk.

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

9 Software management

This exercise is about installing and managing software.

Exercise 1: Package manager

) Refresh the sources of your package manager
) Install updates for your system
) If you are under Ubuntu, remove old software by using autoremove (otherwise skip this step)
) Search for a package called youtube-dl
e) Install the package you found in the previous step

) Run youtube-dl to see if it works. It should display something like “Usage: ...”

) Open the man page for youtube-dl

) Remove youtube-dl from your system

) Look at the disk usage of your system partition (Hint: df). Then clean the cache of your package
manager. Look at the disk usage again: some space should have been freed.

Exercise 2: Ubuntu only: Installing software from PPA

Skip this exercise if your distribution is not Ubuntu-based.

If a program is not in the official package sources, you might still be able to install it using your
package manager. Under Ubuntu, a developer can create a Personal Package Archive (PPA), sort of a
personal software channel which you can integrate into your sources list. After refreshing your sources,
you may then install and upgrade software from the PPA as if it was an official source.

Caution: Anyone can own a PPA and distribute arbitrary software over it. Make sure you trust the
developer!

In this exercise, we are going to install a video transcoder called Handbrake.

a) Google for “Handbrake PPA” and pick the Launchpad link

b) Use the command add-apt-repository to add the PPA to your sources as described on Launch-
pad

¢) Update your software sources

d) Install handbrake-gtk using your package manager

e) In your start menu, search for “Handbrake” and open the program. Its logo shows a pineapple.
The program should open.

f) Uninstall handbrake-gtk

g) We are now going to remove the PPA from the system. There is no command to do this. Edit
the file /etc/apt/sources.list and remove the two lines that contain “stebbins”.

[Co) =v-sn | 18

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

h) Refresh your software sources again.
i) Attempt to install handbrake-gtk. There should be no such package.

Exercise 3: Installing a package manually

Even if there is no package available in the software source and there is no PPA available, there
might be a package available online that you can download manually and install. This means that
you download the package file using your browser or the wget command and then tell your package
manager to install it. This way, the package can be removed but not upgraded automatically by
your package manager.

Note: In this method you need to trust the developer since the package manager only verifies the
integrity of the package, not the security.

In this exercise we are going to install the software TeamViewer. Note that this is a proprietary
(non-free) software.

a) In your browser, go to https://www.teamviewer.com and visit the Downloads page

) Select the version suitable for your OS and architecture (32- vs. 64-bit) and download it

) Open a terminal, navigate to your Downloads folder and check that the file exists

) Tell your package manager to install the file (use Tab completion when typing the filename
teamviewer. . .)

e) Start teamviewer to check that the program works

f) Use your package manager to remove the package.

Exercise 4: Compile from source using git

Sometimes there is no package at all available for the software you are looking for. In this case, you
need to go online and download a program manually. For Free and Open Source Software, you often
get the sources and compile the program suitable for your OS and architecture.

In this exercise, we are going to download the source of a software called £3 from Github, compile
it into an executable program and install it. Note that programs installed that way are not
managed by your package manager. You will need to update and uninstall them manually. Only
use this option if you are sure that there is no package with your software for your distro. Note:
When installing software this way, you will download and run code from a source that is not verified
by your distro’s community. Only do this with software you trust.

Before you start, you need to make sure your system has the required utilities to compile a program:

o Ubuntu-based: apt-get install build-essential
¢ OpenSUSE: sudo zypper in --type pattern devel_basis

a) In your browser, visit the GitHub page of £3: https://github.com/AltraMayor /{3

b) In the top right, there is a green button saying “Clone or Download”. Copy the https URL to
your clipboard.

¢) In a terminal, go to your Downloads folder and type git clone URL where you replace URL by
the URL you just copied in the previous step. This will create a new directory £3 with the
contents of the Github repository you just cloned.

d) Go into the £3 directory and follow the instructions of the README to compile (make) and
install the main software without the extras (you will type 2-3 commands).

[Co) =v-sn | 19

https://www.teamviewer.com
https://github.com/AltraMayor/f3

The <ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

e) Type £3read to verify that the program has been installed correctly. It should complain “f3read:
The disk path was not specified”

f) We will now uninstall £3. Unfortunately, the developer has not included a script to uninstall
f3, meaning that we must manually delete the files that were created by the install step. You
probably get a feeling now why the package manager is always the preferrable option to install
software. To locate the files we want to delete, we look at the output of the previously run install
command. To help you, there are 4 files to be deleted:

e 2 files in /usr/local/bin/
e 2 files in /usr/local/share/man/mani/

Note: Every sudo make install is different and you need to figure out on your own how to undo its
effects. Nice developers provide an option sudo make uninstall.

Exercise 5: Installing from a self-containing install script

It is possible to build setups for Linux. This means that you download some file (typically the file
name ends with .run) and blindly execute it. The file self-contains all the data it needs and installs
the program on your computer. Just like under Windows, you don’t know and have no control
over what’s going to happen when running such a file. Outdated software may destroy your
computer and you need to trust the developer.

In this exercise, we will install PostgreSQL from a .run archive. PostgreSQL can be installed with the
package manager on most distros, but for the sake of training, we’ll do the .run Method here.

a) In your browser, visit https://www.enterprisedb.com/downloads/postgres-postgresql-
downloads#linux and download the newest version of the installer for your distro and
architecture.

b) Open a terminal and navigate to your Downloads folder

¢) Use chmod to make the freshly downloaded file executable

d) Attempt to run the installer as an unprivileged user (using ./postgres<TAB>) where TAB is
autocompletion by pressing the Tabulator key on your keyboard

e) Do the same thing as root. Note that now you are executing an unknown program with
super user privileges. This is bad practice and should be done as your very last
choice!

f) Click yourself through the installer. Leave default values as they are. Type any password when
asked. Do not run Stack Builder.

g) The software is now installed in your /opt directory. To run it, execute the program postgresql
which you can find in /opt/PostgreSQL/YOUR.VERSION/bin/. It should complain that it does
not know where to find the server configuration file.

h) It’s cumbersome to have to type the full path every time we want to start up the program. We
can either add PostgreSQL’s bin folder to the $PATH variable (out of scope of this exercise) or
create a symlink to it. For the sake of the exercise, create a symlink to the executable under
usr/bin/postgres

i) Verify that the program can now be run without typing the entire path

j) PostgreSQL comes with an uninstaller. You can find it right above the bin/ directory, it’s called
uninstall-postgresql. Run it as root.

k) The installer tells you that the data directory and service user account have not been removed.
Remove opt/PostgreSQL manually.

1) Remove the user postgres that the installer created

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#linux
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads#linux

The <ch Hacking Session - r158.49907d0
for a sustainable digital world (build date October 18, 2017)

Note: Every .run is different and you need to figure out on your own what needs to be done to undo
it (if possible).

21

The .ch Hacking Session - r158.49907d0

for a sustainable digital world (build date October 18, 2017)

10 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Find more information at: https://creativecommons.org/licenses/by-sa/4.0/

[Co) =v-sn | 22

	Welcome
	A Word About Organisation
	Getting What You Need

	Basics
	Explanation of Basic Concepts
	Terminal and Commands
	man
	Flags
	Wildcards
	sudo

	Exercises
	Exercise 0: man
	Exercise 1: ls
	Exercise 2: mv
	Exercise 3: cd
	Exercise 4: cat
	Exercise 5: mkdir and rmdir
	Exercise 6: rm
	Exercise 7: cp
	Exercise 8: clear

	Files
	wc
	diff
	chown
	chmod
	echo
	touch
	ln
	file
	less
	which (whereis)
	Exercise 1

	Jobs
	Exercise 1: fg, bg, &, top, htop, kill, pkill, killall
	Exercise 2: ps, kill, killall, pkill

	Remote
	Exercise 1: ssh, scp
	Exercise 2: tmux

	Searching
	Exercise 1: grep
	Exercise 2: find
	Exercise 3

	System Management
	Exercise 1: Power on/off
	Exercise 2: Space Left on Disk
	Exercise 3: User Management

	Block devices and file systems
	Exercise 1: Partition a disk
	Exercise 2: Create a file system
	Exercise 3: Using dd

	Software management
	Exercise 1: Package manager
	Exercise 2: Ubuntu only: Installing software from PPA
	Exercise 3: Installing a package manually
	Exercise 4: Compile from source using git
	Exercise 5: Installing from a self-containing install script

	License

