The <h Revision: r51.ebef4b9

for a sustainable digital world Bu1ld 2019_10_21 1428

Console Toolkit Exercises

1 Introduction

Welcome to this exercise session! This is a practical exercise on the Linux command line.
If you have any question about the exercises, feel free to ask the helpers for assistance.

Difficulty

The exercises are designed in such a way that you will have to find solutions by reading
the manuals and using search engines. You are expected to come up with appropriate
solutions on your own, there will be no step-by-step guided exercises!

There will be quite simple exercises for complete beginners at the start, but there are
also some much more difficult ones further into the exercise. Feel free to skip ahead!

Liability

By taking part in this exercise, you acknowledge that you alone are responsible for
your computer. TheAlternative and its parent organisation, the Student Sustainability
Commission, will not be held liable for any damages or loss of data.



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

2 Basics

To solve some of the exercises, you will need to download some files. Whenever you see
an orange box like below, this means you have a task to solve.

Open a terminal and enter the following (all on one line):
curl https://files.project21.ch/LinuxDays-Public/HS18-exercise.zip
-0 exercises.zip

Then extract the zip archive like this:
unzip exercises.zip

2.1 Running a command

To run a command, you just type it into the console and hit enter. Most useful commands
require some arguments. Arguments are given after the name of the command, separated
by spaces. There are also so-called flags, which set some options to alter the behaviour
of a command. They have the form -x (single letter form) or --long-option (long
format).

An example of a more involved command:

[ 1ls -1 —--human-readable ~/Downloads ]

2.2 Getting help

man is a command you will need throughout the following exercises. It stands for “man-
ual” and shows you what almost any given command can do and which options are
available for it. Almost all commands provide such a “manpage”, which is typically
written by the developers themselves.

The man command itself has its own manpage. Type man man to access it, use the
arrow keys to scroll, and press [ g | to exit. Have a look around, especially at the
different section numbers. What is the section number for system calls?

An alternative to using the man pages is to try and see if a command has a help option.

2 /1]



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

This is usually displayed by appending the option --help after the name of the com-
mand, which will often display much shorter and concise instructions on how to use a
command.

Look at the help output of 1s. What is the flag to see hidden files?

2.3 Navigating directories

You can navigate your file system in the terminal, just like you could with a graphical
program. Below are the most important commands.

Commands for navigating directories

Command Description

pwd Display the current working directory.

tree DIR Get a visualization of the directory tree under DIR.

1s DIR List all files and directories in the current working directory.
cd DIR Change the current working directory to the given directory.

Have a look around your home directory and try out the mentioned commands.
You will most likely recognise the layout from your graphical file browser. Re-
member you can always return to your home directory by running cd without any
arguments.

2.4 Modifying directories

Just like in graphical programs, you can create and delete directories on the command
line.

3 /[19



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

Commands for modifying directories

Command Description

mkdir DIR Create a new directory with the given name.

rmdir DIR Remove a directory. Will not work with non-empty
directories.

rm -r DIR Remove a directory and its contents. Attention! There is

no trashcan on the command line! Files and directories
will be deleted irrevocably.

cp -r SOURCE TARGET | Copy a source directory (recursively with all its contents)

to a target.

mv SOURCE TARGET Move a file or directory. Also used to rename

files/directories.

Create a directory for the following exercises (you can call it console-toolkit).
Change into that directory and create a file called notes. Then move the exercise
file directory you downloaded in task 2.1 into your newly created directory.

2.5 Viewing files

If you want to view the contents of a text file, you have the following options:

Commands for viewing files

Command Description

cat FILE Output a file to the terminal.

head FILE Output the first couple of lines to the terminal.
tail FILE Output the last couple of lines to the terminal.
less FILE Browse a file in a visual viewer.

tail is often used to inspect errors log files. Use tail to find the last three lines
of dmesg log (in the exercise files).

dmesg is tool to view the log output of your kernel.

4 /16



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

2.6 Console tips & tricks

There are many small things that can make your life when using the terminal little bit
easier. Following is a table with the most important keyboard shortcuts you can use to
speed up your workflow.

Terminal keyboard shortcuts

—|— Delete one word backwards.
(ctrl] 4+ u ] Delete the entire line.
(ctri]+( 1] Clear the terminal.

(ctri]+a ) Go to the beginning of the line.
—i—@ Go to the end of the line.
ctrl+ ¢ | Terminate the currently runnig process.

(ctri] [ d ] Quit the shell.

3 Files & Permissions

This section introduces you to basic commands related to files. We will first look at a
command that can be used for creating empty files.

The touch command is most frequently used for creating new, empty files. If you check
the manual, you will see that it can also change certain file timestamps (access and
modification times).

Switch to your home directory. Execute touch file. A new file should have been
created. Confirm that this is the case.

We already saw cat in the previous section. Another tool to look at files is 1ess. This
command is great if you want to look at large bodies of text because unlike cat, it has
a built-in scroll function. Once you are done looking at the file, you can quit with [ q |.

3.1 Permissions

We will now look at two commands to manage permissions.

chown stands for “change owner”. It is used to change the owner of a given file. It can
also change the group ownership.

5 /[0



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Bulld 2019_10_21 1428

Create a new, empty file (hint: touch) and use chown to change its ownership
to the root user (you will probably need sudo for this). Try deleting it. Then
change the ownership back to your own user.

A very similar command is chmod. chmod stands for “change file mode bits” and controls
the following permissions on any given file:

e Read: Who can see the file data.
e Write: Who can modify the file.

e Execute: Who is allowed to run the file (like a program or a script)

Permissions can be viewed using 1s -1.

The read, write and execute permissions do different things, depending on whether
they are set for directories or for files. Find out what they mean for files and
directorues by playing around with the chmod command, readings its manual or
searching on the internet.

3.2 File tools

There are a number of other commands that are frequently used to get information on
files:

Commands for getting information about files

Command Description

wc $file Display line, word, and character count of a file
diff $filel $file2 Show differences between files

1n $target $link name Create a link

du $file Estimate file space usage

daf Report file system disk usage

In the next exercise we are going to read some text from the standard input (also called
stdin). Reading from stdin means you can just type text into the console. When
you are done, hit to enter a newline and then hit [ctrl]+[ d |. This is the universal
end-of-file character in Unix-like systems. It signals to the command that it the input
has finished. You can even use this key shortcut to close your terminal.

6 /[16]



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

Type the command cat -. This starts cat to read from stdin. Enter some text
and observe what happens when you press . cat will just keep reading until
the end-of-file character, so you can enter multiple lines of text. When you are
done, terminate the input as described above.

Sometimes you might want to know the length of some text. First, consult wc’s
manual to find out how you can read from standard input. Copy a line of text
of your choice from the wec manual, then use the wc syntax that you looked up to
read from standard input. Paste the text and terminate the input as before.

Copying and pasting in the console usually works with +@+
and [ctrd]+[ & |+ v |, this depends on the terminal though.

Hardlink A hardlink is a pointer to a specific, physical location on a hard disk. If the
file name of the file that is linked to changes, the link still works. However, if the file is
replaced by a different file with the same name, the hardlink will now not point to the
new file! It will still point to the location of the old file.

Symlink A symlink (short for symbolic link) points to a file name, to an actual file
path. If the data behind the file name is changed, the symbolic link will then point to
this new file, as long as the name stays the same. This is a higher level concept than a
hardlink, as it operates above the concept of file names. Most of the time, a symlink is
preferrable to a hardlink.

Have a look at the 1n manual to find out how to create a symbolic link. Then
create a link in your home directory to a directory you use frequently.

Lastly, two commands that are loosely related to files are df and du. These commands
are used to find out how much space files take up. df shows coarse-grained disk usage as
reported by the file system. du counts the disk usage of individual files and directories.

7 /[1d



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

When you run df and du, the sizes of files are reported in multiples of blocks.
The size of a block depends on your file system, but typically is between 512 bytes
and 1 kilobyte. This means that you would have to multiply by this size the true
size, in bytes. Find out how to make the output of df and du more readable for
humans by looking at their options in the manual (hint: the option is the same
for both tools).

4 Leveraging the command line

4.1 Globbing (Wildcards)

Globbing is a useful tool to work with files that share a pattern. For example, to refer
to all jpg images in a directory, you can use *.jpg. The * means ‘any number of any
characters’, so this pattern will give you all files that end with .jpg. Similarly, dir/*
will give you all files in dir, except hidden files.

There are a few more useful patterns, like ? (question mark) which matches any single
character, or {*. jpg,*.png}, which is a list that matches both . jpg and .png files. To
learn more, you can have a look at man 7 glob.

Ouput all .txt files in notes/ to the terminal in a single command. The output
will tell you if you did it correctly.

Create a new directory called cats. Copy all cat pictures in pictures/ (in the
exercise files) to your new cats directory, with a single command.

4.2 Pipes

Pipes are useful to connect multiple commands together. One of the design principles
of Unix was “do one thing, and do it well”. This means, tools should be simple and
powerful in their specific domain, but there should also be a mechanism to combine
multiple programs in an easy way. This mechanism is the pipe, the | symbol. It allows
you to connect the output of one program to the input of another program.

8 /[16



The <h Revision: r51.ebef4b9

for a sustainable digital world Bu1ld 2019_10_21 1428

For example, we can combine du and sort to work together. du analyses the usage of
disk space, and sort just sorts lines it is given. This pipe analyzes your home directory
and tells you which directory uses the most space:

du -sh * | sort -h

Here the * globbing pattern stands for “every file in the current directory”.

Task 4.3: Counting lines in multiple files

wc (word count) can be used to count the number of lines in a file (-1 flag). Use
cat to output all files in the notes directory (exercise files) at the same time and
connect it to wc to count the lines.

4.3 Find

Looking for specific files on your system is a task that one has to do fairly regularly.
Two very popular tool for finding files with certain properties are find and grep. In
this section, we cover find. As a rule of thumb, find is best used when you know that
your file has certain metadata: Maybe you know approximately when you have created
the file, when you last looked at it, how large it is etc. In contrast, grep is usually used
when you want to look at the content of a file.

find works by essentially filtering all files through a chain of conditions, given by flags.
Working with find is fairly straight forward and almost like verbally explaining what
you are looking for.

find -mtime -1 -size +100k

This searches for all files that have been modified (-mtime) less than one day ago (-1)
and have size (-size) larger than 100 Kilobytes (+100k). find has a lot of conditions
where it makes sense to specify “greater than” or “smaller than”. This is specified
by prefixing the amount with a + or a —. This is why the condition “larger than 100
Kilobytes” is written as -size +100k.

If we additionally knew that our file was smaller than one gigabyte, we would type:

find -mtime -1 -size +100k -size -2G

It’s necessary to use -2G here, since file sizes are rounded up. A file that has 800M will

9 /16



The

.ch

for a sustainable digital world

Revision: r51.ebef4b9
Build: 2019-10-21 14:28

be rounded to 1G. The semantics of find use strictly smaller (<), therefore we have to

compare to 2G.

Here is an overview of options for find that are useful to know.

Useful find flags

Flag
-name
-size
—atime
-mtime
-type

Description
Matches the name of a file.
Condition on the size of a file.
Condition on when file was last accessed.
Condition on when file was last modified.
Specifies type of file (directory, regular file ...).

Task 4.4: The largest cat

Use find to find all cat pictures (catx) with a size over 200 kilobytes in the
exercise directory. There should be more than one!

4.4 Grep and regular expressions

REGEX GOLF:

YOU TRY T0 MATCH ONE
GROUP BUT NOT THE OTHER.

/m| hwﬂa/mm{s
SR WARS SUBTITLES
BUT NOT 57AR TREK.

359 1

{META-REGEX GOLF: }— [META-META-REGEX GoLF: r{...AND BEYOND: |——
50 T LIROTE A PROGRAM | | ... BUT I LOST MY CODE REALLY, THIS 15 ALL
THAT PIAYS REGEXGOLF | | 50 ITM GREPPING FOR | | /(META-)*REGEX GOLF/,
WITH ARBITRARY LISTS... | | FILES THAT LDOK LIKE NOWYOU HAVE.

on...| | FEGEX GOLF SOLVERS. INFNITEE PROBLENS.
A NO, T HAD :

xked 1313, https://xked.com/1313/

While working with many files in different folders, you can find yourself losing track of
what is in what file. To quickly find something in one of many files, you can use grep.
Grep is a tool for searching a body of text for a specific pattern. Those patterns are
specified with a syntax called “Regular Expressions” or regexes.

Regexes can easily become very complicated (there are entire books on this topic). We’ll

have a look at the very basics here. Regexes are comprised of a string of characters, e.g.
foo.bar[0-9]. Let’s look at it in more detail:

10 /




The <h Revision: r51.ebef4b9

for a sustainable digital world Bu1ld 2019_10_21 1428
e foo Matches the literal word “foo”.
o . Matches any single character.

e bar Matches the literal word “bar”.

[0-9] Matches a single digit between 0 and 9.

For example, this regex foo.bar [0-9] would match on all of these strings:

e foo barl
e fooobar9
e foozbarb
e foolbar2

An important thing to note is that regular expressions don’t have to match the entire
string. So the example regex would also match on XXXXfoolbar2XXXX, because foolbar2
is part of that string.

So how do we try that on the command line? Simple, to test out grep, we can use echo
to pipe a string into grep to match. Like this:

echo foolbar2 | grep foo.bar[0-9]

This should output foolbar2, because grep outputs all lines from its input that match
the regex.

There are a few command line options that you should know about grep. These can
also be combined, like so: grep -rnoh PATTERN FILE.

Useful grep flags

Command Description

-r Recursively look at all files under the given directory.

-0 Only print the matching strings, not the entire line.

-h Don’t print the filename, just the matching string/line.

-n Prefix the output with the linenumber where the match occured.

11 /[i6]



Revision: r51.ebef4b9
Build: 2019-10-21 14:28

Regex building blocks

The <h
for a sustainable digital world

Regex Example Description
Match Expressions
<character literal> | f Matches the character <character
literal>. The example matches on f.
. Matches any single character.
[<char1>-<char2>] [a-z] Matches a single character in the range
from <char1> to <char2> (inclusive).
The example matches on any lowercase
character. The character range can be
specified multiple times, like so:
[a-zA-Z0-9]. This would match any
lower- or uppercase character or digit.
[[:alnum:]] [[:alnum:]] Alphanumeric characters (letters and
digits).
[[:alpha:]] [[:alpha:]] Letters.
[[:digit:]1] [[:digit:]] Digits.
[[:xdigit:]] [[:xdigit:]] Hexadecimal digits.
[[:blank:]] [[:blank:]] Blank space (spaces and tabs).
[[:word:]] [[:word:]] Digits, letters and underscores.
Modifiers
? .7 The preceding expression appears zero
times or exactly once. The example
would match on an empty string or any
string of length one.
* L * The preceding expression appears zero,
one or many times. The example would
match on a string of arbitrary length,
including an empty one.
+ .+ The preceding expression appears one or
many times. The example matches on a
string of any length greater than zero.
{<num>} {3} Matches on a string if the preceding
expression appears exactly <num> times.
{<num1>,<num2>} {3,6} Matches on a string if the preceding
expression appears between <numi1> and
<num2> times (inclusive).

Note When using the characters |, +, 7 with their regex meaning, they must be
escaped with a backslash like this: \|, \+, \?. If you want to use any of the ofter
special characters as regular characters, i.e. to match a literal . you can use \.

12 /[i6]




TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

Somewhere in the exercise files, there is an email address hidden in a text file.
Create a regular expression that matches email addresses that end in .ch and find
it!

5 Remote machines

This section will be about working with remote machines. You will connect to one and
move files from and to it. Additionally, you will set up your SSH so you can log in
without entering a password.

ssh (secure shell) is an extremely useful tool, as it allows you to manage servers, connect-
ing to your home computer from a laptop, running computations on super computers,
and even using graphical applications that are installed on a different computer. scp
(secure copy) works just like cp, but allows you to copy files to and from remote ma-
chines. scp is based on the SSH protocol, so it works similiarly and the public key
authentication in exercise 5.2 will automatically also apply to scp.

Remote access tools

ssh user@hostname Open an SSH session with a specific
user on a host.

scp user@hostname:file.txt . Copy a file from remote machine to the
current directory.

scp file.txt user@hostname:file.txt | Copy a file from current directory to
remote host.

If you don’t have an ETH account, use
hackingsession@pterodactyl.vsos.ethz.ch with password
BoredHacker for the following exercises instead.

Use SSH to connect to the Euler supercomputer at nethz-login@euler.ethz.ch,
where nethz-login is your nethz account name. You can login using your regular
credentials.

It is inconvenient that you have to enter your password every time you want to log in.
You can set up SSH in a way where you don’t have to provide your password! This is
done with public key cryptography. Basically, you generate a public key and a private
key. The private key you keep safe and only for yourself. The public key you can

13 /[16]



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Build: 2019-10-21 14:28

distribute to anyone. Now you can authenticate yourself for anyone that has your public
key: You can create a signature with your private key, that can be verified using the
public key. However, only the owner of the private key can create the signature that is
verifiable by the public key! This can be used by an SSH server to authenticate clients
that want to open an SSH session.

Generate your private/public key pair using ssh-keygen. Then copy your gener-
ated public key (.ssh/id_rsa.pub) to .ssh/authorized keys on the server. Try
logging in with SSH now, it should no longer require a password.

6 Jobs & Processes

Jobs are groups of processes that are running in the current shell. Often, a job only
consists of one process but sometimes a job is a process pipeline consisting of multiple
jobs, such as echo "Hello" | cat -. Consult the JOB CONTROL section of the bash
manual if you want to study the details.

Knowing how to control jobs is essential if you want to be able to simultaneously run
multiple processes from the same shell.

6.1 Job control

Jobs can be put into the background, started in the background, brought to the fore-
ground and killed. We say a job is running in the background when it is currently
running, but not blocking the shell. In other words, when a job is running in the back-
ground, you can still use your shell normally (although the job might produce output
that will get displayed on your terminal which can be quite annoying).

Working with jobs

List all jobs in the current shell
Start cmd in the background
Bring a job into the foreground
Bring a job into the background

14 /[i6]



The <h Revision: r51.ebef4b9

for a sustainable digital world Bu1ld 2019_10_21 1428

Controlling jobs

ctrl+ z | Suspend current job. Processes may ignore this.

(ctrl+ c | Kill current job. Processes may ignore this.

kill %N Kill job, where N is its number as listed in jobs.Processes may still
ignore this.

kill -9 %N Kill job with number N for sure.

You can wusually use [ctrl+[ c | to terminate a job in the foreground and [ctr]+ z | to

suspend a job in the foreground. Suspended jobs are paused until they are resumed with
either fg or bg. Note that processes can choose to overwrite these shortcuts so they are
not guaranteed to work. If they don’t work, we can always use more drastic measures

6.2 Processes

Processes operate system-wide. Each process has a unique process ID, called the PID
for short. You can think of processes as separate programs running independent of each
other. For example, an echo command spawns a new process that is separated from the
shell process that you are in (which is typically bash).

Managing
top Display info about all currently running processes. Quit with
htop A more modern equivalent of top. It is not installed by

default on most distributions, but can be installed it with
your package manager.
kill PID Send a termination signal to the process PID. This is the
preferred way to terminate a process, as it allows it to exit
normally and perform clean up.

kill -9 PID Send a killing signal to the process PID. The process is killed
by the operating system immediately. Useful for unresponsive
processes.
pkill PATTERN Like kill, but kills processes whose names match a pattern
instead.
pkill -9 PATTERN Send a kill signal instead.
ps Utility to display information about processes. Most

commonly used as ps aux.

kill and pkill actually send so-called signals to processes. There are many signals
that all do different things. When you call ki1l PID, the signal 15 is sent to the process
PID. This signal is called the SIGTERM signal and is used to ask a process to terminate.

15 /[16]



TheAlternative Revision: r51.ebef4b9
for a sustainable digital world Bulld 2019_10_21 1428

When we write kill -9 PID, we are actually sending the signal 9 which is also known
as SIGKILL and kills a process instantly. Read man 7 signal if you want to know more
about signals.

Start a new process by typing sleep 1000 in your shell. Open another shell. Use
top, htop or ps to figure out the PID of the sleep process. Kill it.

kill also works on jobs. Start sleep 1000 in the background (or start it in
the foreground, suspend it, then bring it to the background). Then type kill %N
where N is the job’s number (probably 1). Check the output of the jobs command
and confirm that the job is not displayed anymore.

7 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. See also: http://creativecommons.org/licenses/by-sa/4.0/.

16 /[16]


http://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Basics
	Running a command
	Getting help
	Navigating directories
	Modifying directories
	Viewing files
	Console tips & tricks

	Files & Permissions
	Permissions
	File tools

	Leveraging the command line
	Globbing (Wildcards)
	Pipes
	Find
	Grep and regular expressions

	Remote machines
	Jobs & Processes
	Job control
	Processes

	License

