Contents

9

Bash Quick Guide

Commands and Arguments
2.1 Preventing Word Splitting
2.2 The Importance of Spaces
2.3 Scripts

Variables and Parameters

3.1 Special Parameters e
3.2 Environment Variables oL
3.3 Ambiguous Names e e
Globbing

Expansion

5.1 Expansions and Quotes L e
5.2 Expansion Order
5.3 Brace Expansion e
5.4 Tilde Expansion e
5.5 Parameter and Variable Expansion
5.6 Command Substitution
5.7 Arithmetic Expansion e
5.8 Globbing e
Tests and Conditionals

6.1 Control Operators (&& and ||)
6.2 Grouping Commands e
6.3 Conditional Blocks (ifand [[)
6.4 Conditional Loops (while, until and for) o
6.5 Choices (case and select)

Input and Output
7.1 Command-line Arguments

7.2 File Descriptors
7.3 Redirection
74 Pipes.
Compound Commands

8.1 Subshells
8.2 Command Grouping . . .
8.3 Arithmetic Evaluation . .
Functions

10 Useful Commands

1 Bash Quick Guide

W w NN =

CU Ot = W

(=]

0 00 00 0O 0~ D

15
15
15
16

16

17

Bash is an acronym for Bourne Again Shell. It is based on the Bourne shell and is mostly compatible with its
features.

Shells are command interpreters. They are applications that provide users with the ability to give commands to
their operating system interactively, or to execute batches of commands quickly. In no way are they required for the
execution of programs; they are merely a layer between system function calls and the user.

Think of a shell as a way for you to speak to your system. Your system doesn’t need it for most of its work, but it is
an excellent interface between you and what your system can offer. It allows you to perform basic math, run basic

tests and execute applications. More importantly, it allows you to combine these operations and connect applications
to each other to perform complex and automated tasks.

Bash is not your operating system. It is not your window manager. It is not your terminal (but it often runs
inside your terminal). It does not control your mouse or keyboard. It does not configure your system, activate
your screen-saver, or open your files. It’s important to understand that bash is only an interface for you to execute
statements (using bash syntax), either at the interactive bash prompt or via bash scripts. The things that actually
happen are usually caused by other programs.

This guide is based on the bash guide in GreyCat’s wiki! and aims to be more concise, while still being accurate. It
was produced specifically for the Bash Workshop by TheAlternative.ch?.

It is published under the CC by-nc-sa 4.0 license®.

2 Commands and Arguments

Bash reads commands from its input, which can be either a file or your terminal. In general, each line is interpreted
as a command followed by its arguments.

1s
touch filel file2 file3
1s -1

rm filel file2 file3
The first word is always the command that is executed. All subsequent words are given to that command as
argument.

Note that options, such as the -1 option in the example above, are not treated specially by bash. They are arguments
like any other. It is up to the program (1s in the above case) to treat it as an option.

Words are delimited by whitespace (spaces or tabs). It does not matter how many spaces there are between two
words. For example, try

echo Hello World

The process of splitting a line of text into words is called word splitting. It is vital to be aware of it, especially when
you come across expansions later on.

2.1 Preventing Word Splitting

Sometimes, you will want to pass arguments to commands that contain whitespace. To do so, you can use quotes:

touch "Filename with spaces"
This command creates a single file named Filename with spaces. The text within double quotes is protected from
word splitting and hence treated as a single word.

Note that you can also use single quotes:

touch ’Another filename with spaces’

There is, however, an important difference between the two:

¢ Double quotes prevent word splitting
¢ Single quotes prevent word splitting and expansion

When you use single quotes, the quoted text will never be changed by bash. With double quotes, expansion will still
happen. This doesn’t make a difference in the above example, but as soon as you e.g. use variables, it becomes
important.

In general, it is considered good practice to use single quotes whenever possible, and double quotes only when
expansion is desired. In that sense, the last example above can be considered “more correct”.

Thttp://mywiki.wooledge.org/BashGuide
2www.thealternative.ch
Shttp://creativecommons.org/licenses/by-nc-sa,/4.0/

http://mywiki.wooledge.org/BashGuide
www.thealternative.ch
http://creativecommons.org/licenses/by-nc-sa/4.0/

2.2 The Importance of Spaces

Bash contains various keywords and built-ins that aren’t immediately recognizable as commands, such as the new
test command:

[[-f file 1]
The above code tests whether a file named “file” exists in the current directory. Just like every line of bash code, it
consists of a command followed by its arguments. Here, the command is [[, while the arguments are -¢, ri1e and 11.

Many programmers of other languages would write the above command like so:

[[-f filell]

This, though, is wrong: Bash will look for a command named r[-f, which doesn’t exist, and issue an error message.
This kind of mistake is very common for beginners. It is advisable to always use spaces after any kind of brackets in
bash, even though there are cases where they are not necessary.

2.3 Scripts

You have probably interacted with bash through a terminal before. You would see a bash prompt, and you would
issue one command after another.

Bash scripts are basically a sequence of commands stored in a file. They are read and processed in order, one after
the other.

Making a script is easy. Begin by making a new file, and put this on the first line:

#!/bin/bash

This line is called an interpreter directive, or more commonly, a hashbang or shebang. Your operating system uses
it to determine how this file can be run. In this case, the file is to be run using vasn, which is stored in the /bin/
directory.

After the shebang, you can add any command that you could also use in your terminal. For example, you could add

echo ’Hello World’

and then save the file as “myscript”

You can now run the file from the terminal by typing

bash myscript
Here, you explicitly called bash and made it execute the script. basn is used as the command, while myscript is an
argument. However, it’s also possible to use myscript as a command directly.

To do so, you must first make it executable:

chmod +x myscript

Now that you have permission to execute this script directly, you can type
./myscript
to run it.

The ./ is required to tell bash that the executable is located in the current directory, rather than the system directory.
We will come back to this in the chapter on Variables.

3 Variables and Parameters

Variables and parameters can be used to store strings and retrieve them later. Variables are the ones you create
yourself, while special parameters are pre-set by bash. Parameters actually refers to both, but is often used
synonymously to special parameters.

To store a string in a variable, we use the assignment syntax:

varname=vardata

This sets the variable varname to contain the StI‘il’lg vardata.

Note that you cannot use spaces around the = sign. With the spaces, bash would assume varnane to be a command
and then pass = and vardata as arguments.

To access the string that is now stored in the variable varname, we have to use parameter expansion. This is the most
common kind of expansion: A variable is replaced with its content.

If you want to print the variable’s value, you can type

echo $varname

The s indicates that you want to use expansion on varname, meaning it is replaced by its content. Note that expansion
happens before the command is run. Here’s what happens step-by-step:

o Bash uses variable eXpansiom Changing echo $varname LO echo vardata
e Then, bash runs echo with vardata as its parameter.

The most important thing here is that variable expansion happens before wordsplitting. That means, if you
have defined a variable like this:

myfile=’bad song.mp3’

and then run the command

rm $myfile

bash will expand this to

rm bad song.mp3

Only now, word splitting occurs, and bash will call =» with two arguments: vad and song.mp3. If you now had a file
called song.mp3 in your current directory, that one would be deleted instead.

To prevent this from happening, you can use double quotes:

rm "$myfile"

This will be expanded to

rm "bad song.mp3"

which is what we want. In this case, you have to use double quotes, as single quotes would prevent expansion from
happening altogether.

Not quoting variable and parameter expansions is a very common mistake even among advanced bash programmers.
It can cause bugs that are hard to find and can be very dangerous. Always quote your variable expansions.
You can also use variable expansions inside the variable assignment itself. Consider this example:
myvariable=’blah’

myvariable="$myvariable blah"
echo "$myvariable"

What will the output of this script be?

First, the variable myvariabie will get the value bian. Then, myvariabie is assigned to again, which overwrites its former
content. The assignment contains a variable expansion, "$myvariable blan". This is expanded to "bian bian", and that is
going to be the new value of myvariabie. So the last command is expanded to echo "bian blan", and the output of the
script is blah blah.

3.1 Special Parameters

Special parameters are variables that are set by bash itself. Most of those variables can’t be written to and they
contain useful information.

Parameter

Name Usage Description
0 "go" Contains the name of the current script
12 3 ete. "g1v ete. Contains the arguments that were passed to the current script. The number

indicates the position of that argument (first, second. ..). These parameters are also
called positional parameters.

* "G Contains all the positional parameters. Double quoted, it expands to a single word
containing them all.
e "$o" Contains all the positional parameters. Double quoted, it expands to several

words, where each word is one parameter. This is special syntax, it behaves
differently from “normal” expansion in quotes. It retains the arguments exactly as
they were passed to the script.

ng#n Contains the number of parameters that were passed to the script

7 ng7n Contains the exit code of the last executed command

3.2 Environment Variables

Environment variables are special variables that are already set when you start bash. In fact, these variables aren’t
specific to bash - they are available in every program that runs on your system and they can affect your system’s
behaviour.

You can use the command printenv in your terminal to display all the environment variables you have currently set.
Most of them contain some system configuration, like the variable ranc, which designates your preferred language.
Some variables, like Tery, BrowsEr or sueLL, designate your preferred default programs (terminal, web browser and shell,
respectively. These may not be set on all systems).

Some of these variables can be useful in your scripts. For example, the variable ranoon gives you a different random
number every time you read it.

Another important environment variable is eata. It contains a bunch of file paths, separated by colons. These paths
designate where your system will look for executables when you type a command. For example, if you type grep in
your terminal, your system will search for an executable called grep in the directories designated in your pata variable.
As soon as it finds one, it will execute that. If it doesn’t find it, you will get a “command not found” error message.

You can modify your environment variables, if you want. The guideline here is to only mess with those variables of
which you know what they do, otherwise you might break something.

The place to modify these variables is your -/.vash_profile file. This file contains some bash code that is executed
whenever you log in. For example, you could add the following line:

export BROWSER="firefox"
This would set your default browser to firefox. Note that on some systems, there are other settings—for example in
your Desktop Environment—which can override these environment variables. You’ll have to test whether this works.

Note the export keyword. This is a bash builtin that takes a variable definition as its argument and puts it in your
environment. If you omit this, your new variable will just be an ordinary variable, rather than an environment
variable.

3.3 Ambiguous Names
Say you have a variable called name that is declared as follows:

name=’bat’

Now, you want to use this variable in order to print batman:

echo "$nameman"

If you try this, you will notice that it doesn’t work—that is because bash will now look for a variable called nameman,
which doesn’t exist. Here’s what you can do instead:

echo "${namel}man"

The curly braces tell bash where the variable name ends. This allows you to add more characters at the end of a
variable’s content.

4 Globbing

Globs are an important bash concept—mostly for their incredible convenience. They are patterns that can be used to
match filenames or other strings.

Globs are composed of normal characters and metacharacters. Metacharacters are characters that have a special
meaning. These are the metacharacters that can be used in globs:

e x: Matches any string, including the empty string (i.e. nothing)
e 7. Matches any single character
e [...1: Matches any one of the characters enclosed in the brackets

Bash sees the glob, for example ax. It expands this glob, by looking in the current directory and matching it against
all files there. Any filenames that match the glob are gathered up and sorted, and then the list of filenames is used
in place of the glob. So if you have three files a, b and aivert in the current directory, the glob is expanded to a aibert.

A glob always has to match the entire filename. That means a+ will match at but not bvat.

Note that globbing is special in that it happens after word splitting. This means you never need to worry about
spaces in filenames when you use globbing, and quoting globs is not necessary. In fact, quotes will prevent globbing
from happening.

5 Expansion

We've already seen parameter and variable expansion, but that’s not the only kind of expansion that happens in
bash. In this chapter, we’ll look at all kinds of expansion that aren’t covered elsewhere.

5.1 Expansions and Quotes

You already know that it is important to quote parameter and variable expansions, but we also told you that quoting
globs—which are, in fact, just another form of expansion—is not necessary. So, which expansions need to be quoted?

The rule of thumb here is as follows:

o Always quote paramater expansion, command substitution and arithmetic expansion
e Never quote brace expansion, tilde expansion and globs

The handy thing here is: All the expansions that require quoting have a $ in their syntax. Parameter expansion is
simply a s followed by a parameter name. Command substitution starts with a $(, and arithmetic expansion starts
with s

So, the rule of thumb breaks down to the following: If there’s a dollar, you probably need quotes.

Now, what if you want to use two kinds of expansion in the same line, but one requires quotes and the other doesn’t?
Consider the following script:

prefix=’my picture’
rm ~/pictures/$prefixx*

Here, we use tilde expansion, parameter expansion and globbing in order to remove all files that start with my picture
in the folder /home/username/pictures/. But because quotes prevent tilde expansion and globbing, we cannot quote the
entire expression. This means that the parameter expansion, too, goes unquoted—and this is fatal, because our
variable contains a space. So what should we do?

The important thing to realize here is that quoting simply prevents word splitting, but it does not actually designate
something as a single string. So we can do the following:

prefix=’my picture’
rm ~/pictures/"$prefix"*

Only the parameter expansion is quoted, so it is protected from word splitting. But that does not automatically
separate it from the rest of the string. Note that there are no spaces between "gprefix" and -/pictures/. Since word
splitting only happens when there are spaces, the entire thing will not be split. Here’s what happens, in order:

First, tilde expansion occurs:

rm /home/username/pictures/"$prefix"/*

Next, parameter expansion:

rm /home/username/pictures/"my picture'"x*

At this point, word splitting happens. But since the only space in our argument is in quotes, the argument remains
intact.

And last, globbing:

rm /home/username/pictures/"my picture"001.jpg /home/username/pictures/"my picture"002. jpg

Now, there’s one last step that happens which we didn’t mention before. It’s called quote remowval. All the quotes
that were needed to prevent word splitting are now ignored, which means that the arguments that are finally given
to rm are:

® /home/username/pictures/my picture001.jpg

® /home/username/pictures/my picture002.jpg
and this is exactly what we wanted.

So, remember: Quotes don’t need to be at the beginning or end of an argument, and if you use several kinds of
expansion together, you can add quotes in the middle as required.

5.2 Expansion Order
All the kinds of expansion happen in a certain order. The order is as follows:

e Brace expansion

o Tilde expansion

o Parameter and variable expansion
e Command substitution

e Arithmetic expansion

o Word splitting

¢ Globbing

5.3 Brace Expansion

Brace expansions are often used in conjunction with globs, but they also have other uses. They always expand to all
possible permutations of their contents. Here’s an example:

$ echo th{e,aln

then than

$ echo {1..9}

1234567389

$ echo {0,1}{0..9}

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Brace expansions are replaced by a list of words. They are often used in conjunction with globs to match specific
files but not others. For example, if you want to delete pictures from your pictures folder with filenames IMG020.jpg
through IMGO039.jpg, you could use the following pattern:

rm IMGO{2,3}*. jpg

Note that we don’t use quotes here. Quotes prevent brace expansion.
Brace expansion happens before globbing, so in the above example, the braces are expanded to

rm IMGO2*.jpg IMGO3*. jpg

We end up with two glob patterns, the first matches IMG020.jpg through IMG029.jpg, and the second matches
IMGO030.jpg through IMG039.jpg.

5.4 Tilde Expansion
You have probably already seen and used the tilde in the terminal. It is a shortcut to your home directory:

cd ~/files

This will be expanded to cd /home/username/tiles. Note that tilde expansion only happens outside of quotes, so the
following won’t work:

cd "~/files"

5.5 Parameter and Variable Expansion
Parameter and variable expansion is explained in the chapter on Variables and Parameters.

An important sidenote here is that Parameter expansion and Variable expansion often refer to the same thing. The
official name as per the bash manual is Parameter expansion, but Variable expansion is often used instead as it is
less misleading.

5.6 Command Substitution

Command substitution is a way of using a command’s output inside your script. For example, let’s say you want to
find out where your script is executed, and then move a file to that location.

echo ’I am at’
pwd

This script will simply print the directory it is called from. But you want to move a file to that directory, which
means you need to use it as an argument to the nv command. For that, you need command substitution:

mv ~/myfile "$(pwd)"

The $¢ introduces a command substitution. It works similarly to variable expansion, but instead of putting a
variable’s content, it puts a command’s output in that place. In this example, pwd is run, and the output is (for
example) /home/username/scripts/. Then, the entire command is expanded to

mv ~/myfile "/home/username/scripts/"

Note that with this kind of expansion, quotes are important. The path returned by pwa might have contained a space,
in which case we need the argument to be properly quoted.

5.7 Arithmetic Expansion

Arithmetic expansion is explained in the chapter on arithmetic evaluation.

5.8 Globbing

Globbing is so important, it has a chapter of its own.

6 Tests and Conditionals

Every command you run in your terminal or shell script has a return value. That value is a number, and by
convention, a return value of 0 means success, while any other number indicates an error.

You usually don’t see the return value after running a command. What you do see is the command’s output. If you
want to know a command’s return value, you can read it by issuing

echo "$7"

immediately after running that command.

While you often don’t need to know a command’s return value, it can be useful to construct conditionals and thereby
achieve advanced logic.

6.1 Control Operators (&& and ||)

Control operators can be used to make a command’s execution depend on another command’s success. This concept
is called conditional execution:

mkdir folder && cd folder

In the above example, the & operator is used to connect two commands mxdir folder and cd folder. Using this
connection, bash will first execute mxdir foider, and then execute ca foider only if the first command was successful.

mkdir folder || echo ’Error: could not create folder’
In this example, the || operator is used to connect the commands. Here, the second command is executed only if the
first command failed.

It is good practice to make your own scripts return an error (i.e. something other than 0) whenever something goes
wrong. To do that, you can use this construct:

mkdir folder || exit 1

The exit command immediately stops the execution of your script and makes it return the number you specified as
an argument. In this example, your script will attempt to create a folder. If that goes wrong, it will immediately
stop and return 1.

Control operators can be written more legibly by spreading them across multiple lines:

mkdir folder \
|l exit 1

The backslash at the end of the first line makes bash ignore that line break and treat both lines as a single command
plus arguments.

6.2 Grouping Commands

Now, what if you want to execute multiple commands if the first one fails? Going from the example above, when
mkdir folder fails, you might want to print an error message and return 1.

This can be done by enclosing these two commands in single curly braces:

mkdir folder || { echo ’Could not create folder’; exit 1 }

The two commands in curly braces are treated as an unit, and if the first command fails, both will be executed.

Note that you need to include spaces between the curly braces and the commands. If there were no spaces, bash
would look for a command named {echo and fail to find it.

There’s a semicolon separating the two commands. The semicolon has the same function as a line break: it makes
bash consider both parts as individual commands-plus-arguments.

The example above could be rewritten as follows:

mkdir folder || {
echo ’Could not create folder’
exit 1

}

Here, no semicolon is required, because there is a line break between the two statements. Line breaks and semicolons
can be used interchangeably.

6.3 Conditional Blocks (if and [[)

it is a shell keyword. It first executes a command and looks at its return value. If it was 0 (success), it executes one
list of commands, and if it was something else (failure), it executes another.

It looks like this:

if true
then

echo ’It was true’
else

echo ’It was false’
fi

true i a bash builtin command that does nothing and returns 0. it will run that command, see that it returned 0,
and then execute the commands between the then and the eise.

In many programming languages, operators such as >, < or == exist and can be used to compare values. In bash,
operators don’t exist. But since comparing values is so common, there’s a special command that can do it:

[[a=0b1]

[[is a command that takes as its arguments a comparison. The last argument has to be a 11. It is made to look like
a comparison in double brackets, but it is, in fact, a command like any other. It is also called the new test command.
(The old test command, often simply called test, exists as well, so be careful not to confuse them).

For that reason, the spaces are absolutely needed. You cannot write this:
[[a=bl]

This will make bash look for a command called [[a=b11, which doesn’t exist.

[does not only support comparing strings. For example, ([-¢ file 11 will test whether a file named “file” exists.
Here’s a list of the most common tests you can use with rr:

e -c riLE: True if file exists.

e -f rILE: True if file is a regular file.

e -a rie: True if file is a directory.

o String operators: * -z string: True if the string is empty (its length is zero). * -n strine: True if the string is not
empty (its length is not zero). * strine = strine: True if the string matches the glob pattern (if you quote the
glob pattern, the strings have to match exactly). * strmc 1= strmve: True if the string does not match the glob
pattern (if you quote the glob pattern, the strings just have to be different). * strmne < strmve: True if the first
string sorts before the second. * strine > strine: True if the first string sorts after the second.

o EXPR -a Expr: True if both expressions are true (logical AND).

e EXpR -o ExPR: True if either expression is true (logical OR).

o 1+ mxer: Inverts the result of the expression (logical NOT).

o mxer && ExpR: Much like the ‘-a’ operator of test, but does not evaluate the second expression if the first already
turns out to be false.

e exer || Expr: Much like the ‘-0’ operator of test, but does not evaluate the second expression if the first already
turns out to be true.

e Numeric operators:

— INT -eq InT: True if both integers are equal.

— 1w -ne InT: True if the integers are not equal.

— i -1t vt True if the first integer is less than the second.

— mir -gt vt True if the first integer is greater than the second.

— i -1e mv: True if the first integer is less than or equal to the second.

— mir -ge InT: True if the first integer is greater than or equal to the second.

*

You might occasionally come across something like this:

[a=1b]

Here, we use single brackets instead of double brackets. This is, in fact, an entirely different command, the t
command or old test command. It has the same purpose—comparing things—but the [command is newer, has more
features, and is easier to use. We strongly recommend using rr over [.

6.4 Conditional Loops (while, until and for)
Loops can be used to repeat a list of commands multiple times. In bash, there are wniie loops and for loops.

While loops look like this:

10

while true
do

echo ’Infinite loop’
done

The wnite keyword will execute the true command, and if that returns 0, it executes all commands between the 4o and
done. After that, it starts over, until the true command returns 1 (which it never does, which is why this loop will run
indefinitely).

The above example might not be immediately useful, but you could also do something like this:

while ping -c 1 -W 1 www.google.com
do

echo ’Google still works!’
done

There’s also a variation of the wile loop, called unti1. It works similarly, except it only runs its command list when
the first command fails:

until ping -c 1 -W 1 www.google.com

do

echo ’Google isn’\’’t working!’
done

for loops can be used to iterate over a list of strings:

for var in 1 2 3
do

echo "$var"
done

After the for, you specify a variable name. After the in, you list all the strings you want to iterate over.

The loop works by setting the variable you specified to all the values from the list in turn, and then executing the
command list for each of them.

This is especially useful in combination with globs or brace expansions:

echo ’This is a list of all my files starting with f:’
for var in f*
do
echo "$var"
done

echo ’And now I will count from 1 to 100:°’
for var in {1..100}
do
echo "$var"
done

6.5 Choices (case and select)

Sometimes, you want your script to behave differently depending on the content of a variable. This could be
implemented by taking a different branch of an if statement for each state:

if [["$LANG" = ’en’ 1]
then

echo ’Hello!’
elif [["$LANG" = >de’ 1]
then

echo ’Guten Tag!’
elif [["$LANG" = ’it’ 1]
then

echo ’Ciao!’
else

echo ’I do not speak your language.’
fi

This is quite cumbersome to write. At the same time, constructs like this are very common. For that reason, bash
provides a keyword to simplify it:
case "$LANG" in

en)
echo ’Hello!’

3

11

de)
echo ’Guten Tag!’
it)
echo ’Ciao!’
*)
echo ’I do not speak your language.’

esac

Each choice of the case statement consists of a string or glob pattern, a), a list of commands that is to be executed
if the string matches the pattern, and two semicolons to denote the end of a list of commands.

The string after the keyword case is matched against each glob pattern in order. The list of commands after the first
match is executed. After that, execution continues after the esac.

Since the string is matched against glob patterns, we can use * in the end to catch anything that didn’t match before.
Another construct of choice is the seiect construct. It looks and works similarly to a loop, but it also presents the
user with a predefined choice. You are encouraged to try running this example yourself:

echo ’Which one of these does not belong in the group?’

select choice in Apples Pears Crisps Lemons Kiwis
do

if [["$choice" = Crisps 1]
then
echo ’Correct! Crisps are not fruit.’
break
fi
echo ’Wrong answer. Try again.’
done

The syntax of the seiect construct is very similar to for loops. The difference is that instead of setting the variable
(cnoice in this example) to each value in turn, the seiect construct lets the user choose which value is used next. This
also means that a seiect construct can run indefinitely, because the user can keep selecting new choices. To avoid
being trapped in it, we have to explicitly use break. break is a builtin command that makes bash jump out of the
current do block. Execution will continue after the done. breax also works in for and wnile loops.

As you can see in the example above, we used an ir command inside a seiect command. All of these conditional
constructs (i, for, while, case and select) can be nested indefinitely.

7 Input and Output

Input and output in bash is very flexible and, consequentially, complex. We will only look at the most widely used
components.

7.1 Command-line Arguments

For many bash scripts, the first input we care about are the arguments given to it via the command line. As we saw
in the chapter on Parameters, these arguments are contained in some special parameters. These are called positional
parameters. The first parameter is referred to with s1, the second with 2, and so on. After number 9, you have to
enclose the numbers in curly braces: ${10}, ${11> and so on.

In addition to referring to them one at a time, you may also refer to the entire set of positional parameters with the
go» substitution. The double quotes here are extremely important. If you don’t use the double quotes, each one
of the positional parameters will undergo word splitting and globbing. You don’t want that. By using the quotes,
you tell Bash that you want to preserve each parameter as a separate word.

There are even more ways to deal with parameters. For example, it is very common for commands to accept options,
which are single letters starting with a -. For example, 1s -1 calls the 1s program with the -1 option, which makes it
output more information. Usually, multiple options can be combined, as in 1s -1a, which is equivalent to 1s -1 -a.

You might want to create your own scripts that accept some options. Bash has the so called getopts builtin command
to parse passed options.

12

while getopts ’hlf:’ opt

do
case "$opt" in
h|\?)
echo ’available options: -h -1 -f [filenamel’
£)
file="$0PTARG"
1)
list=true
esac
done

shift "$((OPTIND - 1))"

As you can see, we use getopts within a while loop. getopts will return 0 as long as there are more options remaining
and something else if there are no more options. That makes it perfectly suitable for a loop.

getopts takes two arguments, the optstring and the variable name. The optstring contains all the letters that are
valid options. In our example, these are n, 1 and z.

The ¢ is followed by a colon. This indicates that the f option requires an argument. The script could for example be
called like so:

myscript -f file.txt

getopts Will set the variable that you specified as its second argument to the letter of the option it found first. If the
option required an argument, the variable oprarc is set to whatever the argument was. In the example above, a case
statement is used to react to the different options.

There’s also a special option 7. Whenever getopts finds an option that is not present in the optstring, it sets the shell
variable (opt in the example) to 7. In the case statement above, that triggers the help message.

After all options are parsed, the remaining arguments are “moved” such that they are now in $1, $2... even though
previously, these positional parameters were occupied by the options.

Also note the line snhitt "$(¢ optInD - 1)" at the end. The snift builtin can be used to discard command-line arguments.
Its argument is a number and designates how many arguments we want to discard.

This is needed because we don’t know how many options the user will pass to our script. If there are more positional
parameters after all the options, we have no way of knowing at which number they start. Fortunately, getopts also
sets the shell variable optinp, in which it stores the index of the option it’s going to parse next.

So after parsing all the option, we just discard the first oprmwn - 1 options, and the remaining arguments now start
from $1 onwards.

7.2 File Descriptors

File descriptors are the way programs refer to files, or other things that work like files (such as pipes, devices, or
terminals). You can think of them as pointers that point to data locations. Through these pointers, programs can
write to or read from these locations.

By default, every program has three file descriptors:

o Standard Input (stdin): File Descriptor 0
o Standard Output (stdout): File Descriptor 1
o Standard Error (stderr): File Descriptor 2

When you run a script in the terminal, then stdin contains everything you type in that terminal. stdout and stderr
both point to the terminal, and everything that is written to these two is displayed as text in the terminal. stdout is
where programs send their normal information, and stderr is where they send their error messages.

Let’s make these definitions a little more concrete. Consider this example:
echo ’What is your name?’

read name
echo "Good day, $name. Would you like some tea?"

13

You already know ecno. It simply prints its argument to stdout. Since stdout is connected to your terminal, you will
see that message there.

read 1S a command that reads one line of text from stdin and stores it in a variable, which we specified to be name.
Because stdin is connected to what you type in your terminal, it will let you type a line of text, and as soon as you
press enter, that line will be stored in the variable.

So what about stderr? Consider this example:

ehco ’Hello!’

The command enco does not exist. If you run this, bash will print an error message to stderr. Because stderr is
connected to your terminal, you will see that message there.

7.3 Redirection

Redirection is the most basic form of input/output manipulation in bash. It is used to change the source or destination
of File descriptors, i.e. connect them to something other than your terminal. For example, you can send a command’s
output to a file instead.

echo ’It was a dark and stormy night. Too dark to write.’ > story

The > operator begins an output redirection. It redirects the stdout file descriptor of the command to the left, and
connects it to a file called “story”. That means if you run this, you will not see the output of ecno—after all, stdout
no longer points to your terminal.

Note that > will just open the file you specify without checking whether it already exists first. If the file already
exists, its contents will be overwritten and you will lose whatever was stored in there before. Be careful.

If you don’t want to overwrite the existing content of a file, but rather append your output to the end of that file,
you can use >> instead of >.

Now, let’s look at input redirection. For that, we first introduce a command named cat. cat is often used to display
the contents of a file, like so:

cat myfile
If cat is called without an argument, however, it will simply read from stdin and print that directly to stdout.

Try the following: Run cat, without arguments, in your terminal. Then type some characters and hit enter. Can you
figure out what is happening?

Input redirection uses the < operator. It works as follows:
cat < story
The < operator will take a command’s stdin file descriptor and point it to a file, “story” in this example. This means

cat now ignores your terminal and reads from “story” instead. Note that this has the same effect as typing cat story.

If you want to redirect stderr instead of stdout, you can do as follows:

ehco ’Hello!’ 2> errors
If you run this, you won’t see any error message, even though the command enco doesn’t exist. That’s because stderr
is no longer connected to your terminal, but to a file called “errors” instead.

Now that you know about redirection, there is one subtlety that you have to be aware of: You can’t have two file
descriptors point to the same file.

If you wanted to log a command’s complete output—stdout and stderr—you might be tempted to do something like
this:

mycommand > logfile 2> logfile

However, this is a bad idea. The two file descriptors will now both point to the same file independently, which
causes them to constantly overwrite each other’s text.

If you still want to point both stdout and stderr to the same file, you can do it like this:

14

mycommand > logfile 2>&1

Here, we use the >& syntax to duplicate file descriptor 1. In this scenario, we no longer have two file descriptors
pointing to one file. Instead, we have only one file descriptor that acts as both stdout and stderr at the same time.

To help remember the syntax, you can think of &1 as “where 1 is”, and of the 2> as “point 2 to”. The whole thing,
2>e1, then becomes “point 2 to wherever 1 is”. This also makes it clear that > 10grile has to come before 2>¢1: First
you point 1 to “logfile”, and only then you can point 2 to where 1 is.

There’s also a quick way to completely get rid of a command’s output using redirections. Consider this:

mycommand > /dev/null 2>&1

/dev/mull is a special file in your file system that you can write to, but the things you write to it are not stored. So,
mycommand’S output is written somewhere where it’s not stored or processed in any way. It is discarded completely.

You could also leave out the 2>¢1. Then, you’d still see error messages, but discard the normal output.

7.4 Pipes

Now that you know how to manipulate file descriptors to direct output to files, it’s time to learn another type of
I/0O redirection.

The | operator can be used to connect one command’s stdout to another command’s stdin. Have a look at this:

echo ’This is a beautiful day!’ | sed ’s/beauti/wonder’

The sea command (“sed” is short for “stream editor”) is a utility that can be used to manipulate text “on the fly”. It
reads text from stdin, edits it according to some commands, and then prints the result to stdout. It is very powerful.
Here, we use it to replace “beauti” with “wonder”.

First, the echo command writes some text to it’s stdout. The | operator connected ecno’s stout to sed’s stdin, so
everything ecno sends there is immediately picked up by sed. sea will then edit the text and print the result to its own
stdout. sed’s stdout is still connected to your terminal, so this is what you see.

8 Compound Commands

Compound commands is a catch-all phrase covering several different concepts. We've already seen it, for, while, case,
select and the [[keyword, which all fall into this category. Now we’ll look at a few more.

8.1 Subshells

Subshells can be used to encapsulate a command’s effect. If a command has undesired side effects, you can execute
it in a subshell. Once the subshell command ends, all side effects will be gone.

To execute a command (or several commands) in a subshell, enclose them in parenthesis:

(
cd /tmp
pwd

)

pwd

The ca and the first pva commands are executed in a subshell. All side effects in that subshell won’t affect the second
pva command. Changing the current directory is such a side effect—even though we use ca to go to the /tmp folder, we
jump back to our original folder as soon as the subshell ends.

8.2 Command Grouping

You can group several commands together by enclosing them in curly braces. This makes bash consider them as a
unit with regard to pipes, redirections and control flow:

15

echo ’Logfile of my backup’

rsync -av . /backup

echo "Backup finished with exit code $#H"
} > backup.log 2>&1

This redirects stdout and stderr of all three commands to a file called backup.log. Note that while this looks similar
to subshells, it is not the same. Side effects that happen within the curly braces will still be present outside of them.

8.3 Arithmetic Evaluation

So far, we’ve only been manipulating strings in bash. Sometimes, though, it is also necessary to manipulate numbers.
This is done through arithmetic evaluation.

Say you want to add the numbers 5 and 4. You might do something like this:

a=5+4

However, this will result in the variable a containing the string s+, rather than the number s. Instead, you should do
this:

((a=5+4))

The double parenthesis indicate that something arithmetic is happening. In fact, (¢ is a bash keyword, much like (f.

(¢ can also be used to do arithmetic comparison:

if (C 5 > 9))
then

echo ’5 is greater than 9’
else

echo ’5 is not greater than 9’
fi

It is important not to confuse (¢ and [[. ([is for comparing strings (among other things), while (¢ is only for
comparing numbers.

There’s also arithmetic substitution, which works similarly to command substitution:

echo "There are $((60 * 60 * 24)) seconds in a day."

9 Functions

Inside a bash script, functions are very handy. They are lists of commands—much like a normal script—except they
don’t reside in their own file. They do however take arguments, just like scripts.

Functions can be defined like this:

sum () {
echo "$1 + $2 = $(($1 + $2))"
}

If you put this in a script file and run it, absolutely nothing will happen. The function sun has been defined, but it is
never used.

You can use your function like any other command, but you have to define it before you use it:

sum () {
echo "$1 + $2 = $((C $1 + $2))"
}
sum 1 2
sum 3 9
sum 6283 3141

As you can see, you can use the function sun multiple times, but you only need to define it once. This is useful in

larger scripts, where a certain task has to be performed multiple times. Whenever you catch yourself writing the
same or very similar code twice in the same script, you should consider using a function.

16

10 Useful Commands

This chapter provides an overview of useful commands that you can use in your scripts. It is nowhere near complete,
and serves only to provide a brief overview. If you want to know more about a specific command, you should read
its manpage.

grep

grep can be used to search for a string within a file, or within the output of a command.

searches logfile.tzt for lines containing the word error
grep ’error’ logfile.txt

searches the directory ’folder’ for files

containing the word ’analysis’

grep ’analysis’ folder/

searches the output of ’xzrandr’ for lines that say ’connected’

only matches whole words, so ’disconnected’ will mnot match.
xrandr | grep -w ’connected’

grep returns 0 if it finds something, and returns an error if it doesn’t. This makes it useful for conditionals.
sed

sed can be used to edit text “on the fly”. It uses its own scripting language to describe modifications to be made to
the text, which makes it extremely powerful. Here, we provide examples for the most common usages of sed:

replaces the first occurrence of ’find’ in every line by ’replace’
sed ’s/find/replace’ inputfile

replaces every occurrence of ’find’ in every line by ’‘replace’
sed ’s/find/replace/g’ inputfile

deletes the first occurrence of ’find’ in every line
sed ’s/find//’ inputfile

deletes every occurrence of ’find’ in every line
sed ’s/find//g’ inputfile

displays only the 12th line
sed ’12q;d’ inputfile

sed is often used in combination with pipes to format the output or get rid of unwanted characters.
curl and wget

curl and wget are two commands that can be used to access websites or other content from the web. The difference is
that wget will simply download the content to a file, while cur1 will output it to the console.

curl http://www.thealternative.ch
wget http://files.project2l.ch/LinuxDays-Public/16FS-install-guide.pdf

xrandr

xrandr can be used to manipulate your video outputs, i.e. enabling and disabling monitors or setting their screen
resolution and orientation.

list all available outputs and their status info
xrandr

enables output HDMI -1
xrandr --output HDMI-1 --auto

puts output HDMI-1 to the left of output LVDS-1
xrandr --output HDMI-1 --left-of LVDS-1

disables output LVDS-1
xrandr --output LVDS-1 --off

ImageMagick (convert)

The convert command makes it possible to do image processing from the commandline.

17

scale fullHDWallpaper.jpg to specified resolution
convert fullHDWallpaper.jpg -scale 3200x1800 evenBiggerWallpaper.jpg

"automagically" adjusts the gamma level of somePicture.jpg
convert somePicture.jpg -auto-gamma someOtherPicture.jpg

transform image to black and white

convert colorfulPicture.jpg -monochrome blackWhitePicture. jpg

It is extremely powerful and has lots of options. A good resource is the official website?. It also provides examples
for most options.

notify-send

notify-send can be used to display a desktop notification with some custom text:

notify-send ’Battery warning’ ’Your battery level is below 10%’

The first argument is the notification’s title, the second is its description.

notify-send requires a notification daemon to be running, else it won’t work. Most desktop environments come with a
notification daemon set up and running. If you can’t see your notifications, it might be that you don’t have such a
daemon.

find

find can be used to find files in a directory structure.

finds all files in the current directory and all subdirectories that end
in .png

find -name ’*.png’

finds all files ending %n .tmp and removes them. {} is replaced by the

file’s name when ezecuting the command.

Note that we don’t use globbing here, but instead pass the * to find.

find will then dnterpret the * as a wildcard.

find -name ’*.tmp’ -exec rm ’{}’

finds all files in the directory ’files’ and prints their size and path

find ’files/’ -printf ’Y%s %p\n’

£ind has many options that allow you to perform arbitrary actions on the files it found or pretty-print the output.
sort

sort sorts lines of text files, or lines it reads from stdin.

sort listOfNames.txt # sorts all lines in listOfNames.txzt alphabetically

head and tail

nead and tai1l can be used to show the beginning or the end of a long stream of text, respectively.

display the last few lines of the dmesg log
dmesg | tail

display only the first few lines of a wvery long text file

head verylongtext.txt

Ja

jq is a very simple command-line json parser. It can read data in json format and return specific values.

Its most important options are -e and -a. -e extracts the value of a given key from a json array or object:

Find the object with key "title" from a json object stored in the file "json"
jq ’.title’ < ’json’

The -a option maps all remaining options across the currently selected element. It has to be combined with other
options, for example the - option.

Find the names of all elements stored in the json object in file "json"
jq ’[].name’ < ’json’

4http://www.imagemagick.org

18

http://www.imagemagick.org

shuf

snuf randomly permutates the lines of its input, effectively shuffling them.

Shuffle the lines of file "playlist"
shuf ’playlist’

Get a random line from file "quotes"
shuf -n 1 ’quotes’

tee

tee takes input from stdin and writes it to a file:

sudo zypper up | tee ’updatelog’

Note that this is equivalent to

sudo zypper up > ’updatelog’

tee is useful when you want to write to a file that requires root access. Then you can do the following:

echo ’some configuration’ | sudo tee ’/etc/systemconfig’

A normal redirection wouldn’t work in this case, as that would open the file as a normal user instead of root. Please
be careful when modifying system files.

sleep

sleep pauses the execution of your script for a number of seconds. It basically takes a number as an argument, then
does nothing for that number of seconds, and then returns. It can be useful if you want to make your script do
something in a loop, but want to throttle the speed a little.

prints "Get back to work" once per second.
Note that ’true’ is a command that always returns 0.
while true
do
echo ’Get back to work!’
sleep 1
done

mplayer or mpv

mplayer and mpv are media players that can be used from the console. mpv is based on mpiayer and a lot more modern,
but they can do essentially the same.
play file "music.mp3"

mplayer ’music.mp3’

mpv ’music.mp3’

play file "alarm.mp3" in an infinite loop
mplayer -loop O ’alarm.mp3’

mplayer --loop=inf ’alarm.mp3’

play a youtube wvideo
this only works with mpv and requires youtube-dl to be installed
mpv ’https://www.youtube.com/watch?v=1AIGb11lfpBw’

xdotool

xdotool can simulate keypresses. With this command, you can write macros that perform actions for you. It allows
you to write scripts that interact with GUI programs.

press ctrl+s (in order to save a document)
xdotool key ’Control+s’

type "hello"”
xdotool type ’hello’

19

	Bash Quick Guide
	Commands and Arguments
	Preventing Word Splitting
	The Importance of Spaces
	Scripts

	Variables and Parameters
	Special Parameters
	Environment Variables
	Ambiguous Names

	Globbing
	Expansion
	Expansions and Quotes
	Expansion Order
	Brace Expansion
	Tilde Expansion
	Parameter and Variable Expansion
	Command Substitution
	Arithmetic Expansion
	Globbing

	Tests and Conditionals
	Control Operators (&& and ||)
	Grouping Commands
	Conditional Blocks (if and [[)
	Conditional Loops (while, until and for)
	Choices (case and select)

	Input and Output
	Command-line Arguments
	File Descriptors
	Redirection
	Pipes

	Compound Commands
	Subshells
	Command Grouping
	Arithmetic Evaluation

	Functions
	Useful Commands

